Hybrid gold nanofinger SERS structure for sensing applications

2011 ◽  
Vol 1359 ◽  
Author(s):  
Ansoon Kim ◽  
Zhiyong Li

ABSTRACTWe report here a novel hybrid nanostructure for ultra-sensitive sensing applications based on surface-enhanced Raman spectroscopy (SERS). We rationally engineered gold-coated polymer pillar structures, named as gold nanofingers, in analogy to the tweezers at nanoscale, for active molecule capture and detection using SERS technique. Using nanoimprint lithography, we have demonstrated a cost effective manufacturing method of making such hybrid structures over large scale and achieve reliable enhancement factor. In particular, we have demonstrated the sensing application of the nanofinger structures for melamine and chlropyrifos. The limit of detection (LOD) of melamine in water is found to be 10 nM (1.3 ppb), and LOD of chlropyrifos (a pesticide) is found to be 1 nM (0.35 ppb), which is below the EPA tolerance level of 0.1 ppm for chlropyrifos on citrus fruits.

2014 ◽  
Vol 2014 ◽  
pp. 1-8 ◽  
Author(s):  
Lu Pei ◽  
Yiqun Huang ◽  
Chunying Li ◽  
Yuanyuan Zhang ◽  
Barbara A. Rasco ◽  
...  

Silver-coated gold bimetallic nanoparticles were synthesized and used as substrates for surface-enhanced Raman spectroscopy (SERS) in detecting prohibited triphenylmethane drugs (including crystal violet and malachite green) in fish muscle. The optical properties and physical properties of bimetallic nanospheres were characterized by UV-Vis spectroscopy and transmission electron microscopy. The optimal nanospheres selected had relatively uniform size (diameter: 33 ± 3 nm) with a silver layer coated on the surface of gold seed (diameter: 18 ± 2 nm). For both crystal violet and malachite green, characteristic SERS spectral features could be identified at concentration as low as 0.1 μg/L with these bimetallic nanospheres. Crystal violet and malachite green residues in fish muscle could also be detected at levels as low as 0.1 ng/g, which could meet the most restricted regulatory requirements for the limit of detection in terms of analytical methods for crystal violet or malachite green in fish muscle. This study provides a basis for applying SERS technology with bimetallic nanoparticles to the identification of trace amounts of prohibited substances in aquatic food products, and the methodology could be extended to analyses of other hazardous chemicals in complex food matrices like vegetables and meats.


2011 ◽  
Vol 78 (6) ◽  
pp. 1930-1935 ◽  
Author(s):  
Suzanne L. Hennigan ◽  
Jeremy D. Driskell ◽  
Naola Ferguson-Noel ◽  
Richard A. Dluhy ◽  
Yiping Zhao ◽  
...  

ABSTRACTMycoplasma gallisepticumis a bacterial pathogen of poultry that is estimated to cause annual losses exceeding $780 million. The National Poultry Improvement Plan guidelines recommend regular surveillance and intervention strategies to containM. gallisepticuminfections and ensure mycoplasma-free avian stocks, but several factors make detection ofM. gallisepticumand diagnosis ofM. gallisepticuminfection a major challenge. Current techniques are laborious, require special expertise, and are typically plagued by false results. In this study, we describe a novel detection strategy which uses silver nanorod array–surface-enhanced Raman spectroscopy (NA-SERS) for direct detection of avian mycoplasmas. As a proof of concept for use in avian diagnostics, we used NA-SERS to detect and differentiate multiple strains of avian mycoplasma species, includingAcholeplasma laidlawii,Mycoplasma gallinarum,Mycoplasma gallinaceum,Mycoplasma synoviae, andM. gallisepticum, including vaccine strains 6/85, F, and ts-11. Chemometric multivariate analysis of spectral data was used to classify these species rapidly and accurately, with >93% sensitivity and specificity. Furthermore, NA-SERS had a lower limit of detection that was 100-fold greater than that of standard PCR and comparable to that of real-time quantitative PCR. Detection ofM. gallisepticumin choanal cleft swabs from experimentally infected birds yielded good sensitivity and specificity, suggesting that NA-SERS is applicable for clinical detection.


The Analyst ◽  
2014 ◽  
Vol 139 (24) ◽  
pp. 6426-6434 ◽  
Author(s):  
Kelley C. Henderson ◽  
Edward S. Sheppard ◽  
Omar E. Rivera-Betancourt ◽  
Joo-Young Choi ◽  
Richard A. Dluhy ◽  
...  

The detection limits by NA-SERS and qPCR for the bacterial pathogenMycoplasma pneumoniaewere compared.


Molecules ◽  
2019 ◽  
Vol 24 (14) ◽  
pp. 2578 ◽  
Author(s):  
Chetan Shende ◽  
Amelia Farquharson ◽  
Carl Brouillette ◽  
Wayne Smith ◽  
Stuart Farquharson

The USA is in the midst of an opioid crisis that included over 60,000 overdose fatalities in 2017, mostly unintentional. This is due to excessive use of prescription opioids and the use of very strong synthetic opioids, such as fentanyl, mixed with illicit street drugs. The ability to rapidly determine if people or packages entering the country have or contain drugs could reduce their availability, and thereby decrease the use of illicit drugs. In an effort to address this problem, we have been investigating the ability of surface-enhanced Raman spectroscopy to detect trace amounts of opioids on clothing and packages. Here, we report the measurement of codeine and fentanyl at 100 ng/mL for 5 min on a pad impregnated with gold colloids, as well as a preliminary measurement of 500 pg of fentanyl on a glass surface using one of these pads. The calculated limit of detection for this measurement was 40 pg. This data strongly suggests that these pads, used with portable Raman analyzers, would be invaluable to airport security, drug raids, crime scenes, and forensic analysis.


2019 ◽  
Vol 9 (18) ◽  
pp. 3812 ◽  
Author(s):  
Stomeo ◽  
Casolino ◽  
Guido ◽  
Qualtieri ◽  
Scalora ◽  
...  

In this work, we propose an optimized nanoimprint protocol for the fabrication of a two-dimensional (2D) array of polymethyl-methacrylate (PMMA) nano-pillars deposited on different sputtered configurations (bilayer and multi-layer) of copper (Cu) and aluminum nitride (AlN) slabs supported by a silicon dioxide (SiO2) substrate. Both the Cu/AlN bilayer and multilayer thin films were deposited by a sputtering technique. The sub-micron PMMA pillars were realized by using nanoimprint lithography (NIL). In order to optimize the NIL process, several tests were performed by varying temperature and pressure, allowing us to achieve uniform and high-resolution pillars. The fabricated periodic array enabled the phase-matching of the incident plane wave exciting optical resonances. All the fabricated devices were then optically characterized by means of an ad hoc setup, where the reflected light from the sample was analyzed. The fabricated nano-pillars are mechanically stable, and they could be fully exploited for the realization of novel metallo-dielectric core/shell structures for sensing, surface-enhanced Raman spectroscopy, and light–matter interactions.


ACS Nano ◽  
2020 ◽  
Vol 14 (7) ◽  
pp. 8838-8845 ◽  
Author(s):  
Soniya S. Raja ◽  
Chang-Wei Cheng ◽  
Yungang Sang ◽  
Chun-An Chen ◽  
Xin-Quan Zhang ◽  
...  

2016 ◽  
Vol 71 (2) ◽  
pp. 215-223 ◽  
Author(s):  
Sneha Polisetti ◽  
Nameera F. Baig ◽  
Nydia Morales-Soto ◽  
Joshua D. Shrout ◽  
Paul W. Bohn

Surface enhanced Raman spectroscopy (SERS) imaging was used in conjunction with principal component analysis (PCA) for the in situ spatiotemporal mapping of the virulence factor pyocyanin in communities of the pathogenic bacterium Pseudomonas aeruginosa. The combination of SERS imaging and PCA analysis provides a robust method for the characterization of heterogeneous biological systems while circumventing issues associated with interference from sample autofluorescence and low reproducibility of SERS signals. The production of pyocyanin is found to depend both on the growth carbon source and on the specific strain of P. aeruginosa studied. A cystic fibrosis lung isolate strain of P. aeruginosa synthesizes and secretes pyocyanin when grown with glucose and glutamate, while the laboratory strain exhibits detectable production of pyocyanin only when grown with glutamate as the source of carbon. Pyocyanin production in the laboratory strain grown with glucose was below the limit of detection of SERS. In addition, the combination of SERS imaging and PCA can elucidate subtle differences in the molecular composition of biofilms. PCA loading plots from the clinical isolate exhibit features corresponding to vibrational bands of carbohydrates, which represent the mucoid biofilm matrix specific to that isolate, features that are not seen in the PCA loading plots of the laboratory strain.


2015 ◽  
Vol 207 ◽  
pp. 437-446 ◽  
Author(s):  
Enrico Massarini ◽  
Pär Wästerby ◽  
Lars Landström ◽  
Christian Lejon ◽  
Olof Beck ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document