Copper (II) Phthalocyanine Based Field Effect Transistors as Total Dose Sensors for Determining Ionizing Radiation Dose

2012 ◽  
Vol 1383 ◽  
Author(s):  
Harshil N. Raval ◽  
V. Ramgopal Rao

ABSTRACTChanges in the material properties of copper (II) phthalocyanine (CuPc) thin-films were studied upon exposure to increasing dose of ionizing radiation using photoluminescence spectrum. We observe generation of new energy states below the band gap upon exposure to ionizing radiation. Organic electronic devices – CuPc based resistor and an organic field effect transistor (OFET) – are proposed in this work as total dose sensors for ionizing radiation. We observe an increase in the conductivity of CuPc thin-films with increasing dose of ionizing radiation. To overcome the possibility of changes/degradation in the electrical properties of CuPc thin-films upon interaction with various gases and moisture in the environment, a passivation layer of silicon nitride, deposited by hot-wire CVD process is proposed. Effect of ionizing radiation on the electrical properties of thin-films of CuPc has been studied. We observe a 170% increase in the resistance of the thin-film for a total of 50 Gy radiation dose using Cobalt-60 (60Co) radiation source. Moreover, significant changes in the electrical characteristics of an OFET, with CuPc as an organic semiconductor, have been observed with increasing doses of ionizing radiation. Experiments with an OFET (W/L = 19350 μm / 100 μm and tox = 150 nm) as a sensor resulted in a ∼100X change in the OFF current for a total of 50 Gy dose of ionizing radiation exhibiting a sensitivity of ∼1 nA/Gy. Moreover, implementing a reader circuit, shift in the threshold voltage of the OFET at 1e-7 A drain current displayed a sensitivity of 80 mV/Gy for a total of 50 Gy dose of ionizing radiation. CuPc based organic electronic devices have advantages as sensors because of their low-cost fabrication, large area coverage on flexible substrates, etc.

2020 ◽  
Vol 4 (12) ◽  
pp. 3678-3689
Author(s):  
Cigdem Yumusak ◽  
Niyazi Serdar Sariciftci ◽  
Mihai Irimia-Vladu

Effects of purification were studied in organic field effect transistors. The results presented here indicate that the purity of organic semiconductors is a key parameter to achieve high performance for the field of organic field effect transistors.


2011 ◽  
Vol 1312 ◽  
Author(s):  
Harshil N. Raval ◽  
V. Ramgopal Rao

ABSTRACTOrganic semiconducting oligomer – Pentacene, as a material and organic electronic devices based on it, are proposed here as total dose detectors for ionizing radiation. Pentacene, when exposed to ionizing radiation of γ – rays using Cobalt – 60 (60Co) radiation source, shows increase in the conductivity of the material which can be used as a sensing phenomenon for determining the dose of ionizing radiation. The change in material property was also verified using UV-visible (UV-VIS) spectrum for pentacene thin-films with rising absorption peaks at the oxidized positions in the wavelength. A pentacene resistor can be used as a detector, as the change in the conductivity of the pentacene film can be easily quantified by measuring the change in resistance of the pentacene resistor after different total radiation dose exposures. The experiments resulted in a sensitivity of 340 kΩ/Gy for a total 100 Gy radiation dose for the pentacene resistor. Furthermore, employing this simple electrical measurement technique for determining the dose of ionizing radiation and to improve the sensitivity of the sensor by transistor action, a pentacene based organic field effect transistor (OFET) was exposed to ionizing radiation. Change in OFF current (IOFF) of the OFET sensor with W/L = 19350 μm/100 μm, suggests a sensitivity of 21 nA/Gy for 100 Gy dose. Also, changes in various other parameters like threshold voltage, subthreshold swing, field effect mobility, number of interface states etc. can be extracted from the electrical characterizations which prove their usefulness as a detector for ionizing radiation.


2018 ◽  
Vol 5 (8) ◽  
pp. 180868
Author(s):  
Lanchao Ma ◽  
Shuixing Dai ◽  
Xiaowei Zhan ◽  
Xinyang Liu ◽  
Yu Li

Organic heterojunction is indispensable in organic electronic devices, such as organic solar cells, organic light-emitting diodes and so on. Fabrication of core–shell nanostructure provides a feasible and novel way to prepare organic heterojunction, which is beneficial for miniaturization and integration of organic electronic devices. Fabrication of nanotubes which constitute the core–shell structure in large quantity is the key for the realization of application. In this work, a simple and convenient method to prepare nanotubes using conjugated copolymer of perylene diimide and dithienothiophene (P(PDI-DTT)) was demonstrated. The relationship between preparation conditions (solvent atmosphere, solution concentration and pore diameter of templates) and morphology of nanostructure was studied systematically. P(PDI-DTT) nanotubes could be fabricated in regular shape and large quantity by preparing the solution with appropriate concentration and placing anodic aluminium oxide template with nanopore diameter of 200 nm in the solvent atmosphere. The tubular structure was confirmed by scanning electron microscopy. P(PDI-DTT) nanotubes exhibited electron mobility of 0.02 cm 2 V –1 s –1 in field-effect transistors under ambient condition. Light-emitting nanostructures were successfully fabricated by incorporating tetraphenylethylene into polymer nanotubes.


2012 ◽  
Vol 2012 ◽  
pp. 1-13 ◽  
Author(s):  
Dawit Gedamu ◽  
Ingo Paulowicz ◽  
Seid Jebril ◽  
Yogendra Kumar Mishra ◽  
Rainer Adelung

1-dimensional metal and semiconductor nanostructures exhibit interesting physical properties, but their integration into modern electronic devices is often a very challenging task. Finding the appropriate supports for nanostructures and nanoscale contacts are highly desired aspects in this regard. In present work we demonstrate the fabrication of 1D nano- and mesostructures between microstructured contacts formed directly on a silicon chip either by a thin film fracture (TFF) approach or by a modified vapor-liquid-solid (MVLS) approach. In principle, both approaches offer the possibilities to integrate these nano-meso structures in wafer-level fabrications. Electrical properties of these nano-micro structures integrated on Si chips and their preliminary applications in the direction of sensors and field effect transistors are also presented.


2011 ◽  
Vol 10 (04n05) ◽  
pp. 891-898 ◽  
Author(s):  
RAVISHANKAR S. DUDHE ◽  
HARSHIL N. RAVAL ◽  
ANIL KUMAR ◽  
V. RAMGOPAL RAO

Organic semiconducting material based sensors have been used for various environmental applications. Organic field effect transistors (OFETs) also find their applications in explosive vapor detection and total ionizing radiation dose determination. OFETs using poly 3-hexylthiophene (P3HT), a p-type organic semiconductor material and CuII tetraphenylporphyrin ( CuTPP ) composite as their active material were investigated as sensors for detection of various nitro-based explosive vapors with greater than parts per billion sensitivity range. Significant changes, suitable for sensor response, were observed in ON current (Ion) and transconductance (gm) extracted from electrical characteristics of the OFET after exposure to vapors of various explosive compounds. However, a similar device response was not observed to strong oxidizing agents such as benzoquinone (BQ) and benzophenone (BP). Also, the use of organic semiconducting material sensors for determining total ionizing radiation dose was studied, wherein the conductivity of the material was measured as a function of total ionizing radiation dose. An organic semiconducting material resistor was exposed to γ-radiation and it was observed that the change in resistance was proportional to the ionizing radiation dose. Changes in various parameters extracted from electrical characteristics of the OFET after γ-radiation exposure resulted in an improved sensitivity. To protect the organic semiconductor layer from the degradation in the ambient the sensors were passivated with a thin layer of silicon nitride.


2015 ◽  
Vol 3 (2) ◽  
pp. 461-465 ◽  
Author(s):  
Alexandra J. Ramadan ◽  
Luke A. Rochford ◽  
Dean S. Keeble ◽  
Paul Sullivan ◽  
Mary P. Ryan ◽  
...  

Controlling the structure of organic small molecule thin films is of considerable interest for organic electronic devices. Concurrent use of a copper iodide templating layer with deposition onto heated substrates allows previously unreported morphologies and molecular orientations of vanadyl phthalocyanine to be produced.


2017 ◽  
Vol 46 ◽  
pp. 242-246 ◽  
Author(s):  
Felix Dollinger ◽  
Frederik Nehm ◽  
Lars Müller-Meskamp ◽  
Karl Leo

Sign in / Sign up

Export Citation Format

Share Document