Correlations between higher-order rings and microvoids in hydrogenated amorphous silicon

2015 ◽  
Vol 1757 ◽  
Author(s):  
Parthapratim Biswas ◽  
David Alan Drabold

ABSTRACTIn this paper we report the structure of voids in several thousand atom models of hydrogenated amorphous silicon. The models are produced by jointly employing experimental information from Smets and coworkers [1] and first principles simulations [2]. We demonstrate the existence of a useful correlation between the presence of large irreducible rings and the voids in hydrogenated amorphous silicon networks. Molecular hydrogen is observed in the models, and discussed.

1991 ◽  
Vol 219 ◽  
Author(s):  
Gaorong Han ◽  
Jianmin Qiao ◽  
Piyi Du ◽  
Zhonghua Jiang ◽  
Zishang Ding

ABSTRACTWe have presented ESR and PAS measurements for a series of a-SiS:H and a-Si: H films deposited by glow discharge at different parameters. The spin density in a-SiS:H alloys measured by ESR is essentially independent of the sulphur content, while the density of defects measured by PAS increases significantly with the increasing of sulphur content. The ESR signals in a-SiS:H alloys strongly depend on both annealing and illumination. The spin density increases up to 540°C and then decreases with raising annealing temperature for a-SiS:H and a-Si:H alloys. The results suggest that some new defects such as molecular hydrogen and microvoids are appeared when addition of sulphur to a-Si:H films.


2000 ◽  
Vol 76 (5) ◽  
pp. 565-567 ◽  
Author(s):  
Tining Su ◽  
P. C. Taylor ◽  
Shenlin Chen ◽  
R. S. Crandall ◽  
A. H. Mahan

2009 ◽  
Vol 1153 ◽  
Author(s):  
Anatoli Shkrebtii ◽  
Ihor Kupchak ◽  
Franco Gaspari

AbstractWe carried out extensive first-principles modeling of microscopic structural, vibrational, electronic properties and chemical bonding in hydrogenated amorphous silicon (a-Si:H) in a wide range of hydrogen concentration and preparation conditions. The theory has been compared with experimental results to comprehensively characterize this semiconductor material. The computer modeling includes ab-initio Molecular Dynamics (MD), atomic structure optimization, advanced signal processing and computer visualization of dynamics. We extracted parameters of hydrogen and silicon bonding, electron charge density and calculated electron density of states (EDOS) and hydrogen diffusion. A good agreement of the theory with various experiments allowed us to correlate microscopic processes at the atomic level with macroscopic properties. Here we focus on correlation of the amorphous structure of the material, atom dynamics and electronic properties. These results are of increasing interest due to extensive application of a-Si:H in modern research and technology and to the significance of detailed understanding of the material structure, bonding, disordering mechanisms and stability.


1998 ◽  
Vol 507 ◽  
Author(s):  
Xiao. Liu ◽  
E. Iwaniczko ◽  
R.O. Pohl ◽  
R.S. Crandall

ABSTRACTWe have studied the elastic properties of hydrogenated amorphous silicon (a-Si:H) prepared by hot wire chemical-vapor deposition (HWCVD). With 1 at.% H, this material has been found to be the only amorphous solid which has a low-temperature internal friction more than two orders of magnitude smaller than all other amorphous solids studied to date, as reported recently. As the hydrogen concentration increases above 1 at.%, a broad relaxation peak in internal friction around 5 K is observed. Even more striking is an extremely narrow peak in internal friction accompanied by a discontinuous change in the sound velocity at 13.8 K, which coincides with the triple point temperature of molecular hydrogen. Evidences are provided to show that this anomaly is caused by bulk molecular hydrogen which undergoes a liquid-solid phase transition. This is the first observation for the existence of bulk H2 in HWCVD a-Si:H.


1996 ◽  
Vol 420 ◽  
Author(s):  
R. E. Norberg ◽  
P. A. Fedders ◽  
D. J. Leopold

AbstractProton and deuteron NMR in hydrogenated amorphous silicon yield quantitative measures of species-specific structural configurations and their dynamics. Populations of silicon-bonded and molecular hydrogens correlate with photovoltaic quality, doping, illumination/dark anneal sequences, and with infrared and other characterizations. High quality films contain substantial populations of nanovoid-trapped molecular hydrogen.


Sign in / Sign up

Export Citation Format

Share Document