Effects of Antimony on the Thermoelectric Properties of the Cubic Pb9.6SbyTe10−xSexMaterials

2005 ◽  
Vol 886 ◽  
Author(s):  
Pierre Ferdinand Poudeu Poudeu ◽  
Jonathan D'Angelo ◽  
Adam Downey ◽  
Robert Pcionek ◽  
Joseph Sootsman ◽  
...  

ABSTRACTThe thermoelectric properties of Pb9.6SbyTe10−xSexwere investigated in the intermediate temperature range of 300 – 700 K. The effect of the variation of Sb content (y) on the electronic properties of the materials is remarkable. Samples with compositions Pb9.6Sb0.2Te10−xSex(y = 0.2) show the best combination of low thermal conductivity with moderate electrical conductivity and thermopower. For Pb9.6Sb0.2Te8Se2(x = 2) a maximum figure of merit of ZT ∼ 1.1 was obtained around 700 K. This value is nearly 1.4 times higher than that of PbTe at 700 K. This enhancement of the figure of merit of Pb9.6Sb0.2Te8Se2derives from its extremely low thermal conductivity (∼0.7 at W/m.K at 700 K). High resolution transmission electron microscopy of Pb9.6Sb0.2Te10−xSexsamples shows broadly distributed Sb-rich nanocrystals, which may be the key feature responsible for the suppression of the thermal conductivity.

2007 ◽  
Vol 1044 ◽  
Author(s):  
Joseph Sootsman ◽  
Huijun Kong ◽  
Ctirad Uher ◽  
Adam Downey ◽  
Jonathan James D'Angelo ◽  
...  

AbstractWe report the synthesis of nanostructured composite PbTe with excess Pb and Sb metal inclusions. Scanning and transmission electron microscopy reveal these inclusions in both the nano- and macroscales. The electrical conductivity and Seebeck coefficient dependence on temperature show unusual trends which depend on the inclusion Pb/Sb ratio. Several ratios showed marked enhancements in power factor at 700 K. The thermal conductivity of these composites is reported.


2016 ◽  
Vol 4 (31) ◽  
pp. 7455-7463 ◽  
Author(s):  
Cédric Bourgès ◽  
Margaux Gilmas ◽  
Pierric Lemoine ◽  
Natalia E. Mordvinova ◽  
Oleg I. Lebedev ◽  
...  

Structural analysis of colusite phases by neutron diffraction pattern refinement and high resolution transmission electron microscopy.


Author(s):  
R. Gronsky

The phenomenon of clustering in Al-Ag alloys has been extensively studied since the early work of Guinierl, wherein the pre-precipitation state was characterized as an assembly of spherical, ordered, silver-rich G.P. zones. Subsequent x-ray and TEM investigations yielded results in general agreement with this model. However, serious discrepancies were later revealed by the detailed x-ray diffraction - based computer simulations of Gragg and Cohen, i.e., the silver-rich clusters were instead octahedral in shape and fully disordered, atleast below 170°C. The object of the present investigation is to examine directly the structural characteristics of G.P. zones in Al-Ag by high resolution transmission electron microscopy.


Carbon ◽  
2017 ◽  
Vol 117 ◽  
pp. 174-181 ◽  
Author(s):  
Chang’an Wang ◽  
Thomas Huddle ◽  
Chung-Hsuan Huang ◽  
Wenbo Zhu ◽  
Randy L. Vander Wal ◽  
...  

2016 ◽  
Vol 30 (20) ◽  
pp. 1650269 ◽  
Author(s):  
Thi Giang Le ◽  
Minh Tuan Dau

High-resolution transmission electron microscopy (HR-TEM) has been used to investigate the structural properties of GeMn/Ge nanocolumns multilayer samples grown on Ge(001) substrates by means of molecular beam epitaxy (MBE) system. Four bilayers with the spacer thickness in the range between 6 nm and 15 nm and 10 periods of bilayers of Ge[Formula: see text]Mn[Formula: see text]/Ge nanocolumn are presented. A simplified 2D model based on the theory of elastic constant interactions has been used to provide reasonable explanations to the vertical self-organization of GeMn nanocolumns in multilayers.


Sign in / Sign up

Export Citation Format

Share Document