Comparison of Parameter Extraction Techniques for SiC Schottky Diodes

2006 ◽  
Vol 911 ◽  
Author(s):  
Ming Hung Weng ◽  
Alton B. Horsfall ◽  
Nick G. Wright ◽  
Konstantin V. Vassilevski ◽  
Irina P. Nikitina

AbstractSchottky barrier diodes fabricated on Silicon carbide have been demonstrated as gas sensors for deployment in extreme environments. It has been shown that the interfacial layer formed at the Metal – Semiconductor junction, determines both the sensitivity and the reliability of the device. Hence, accurate knowledge of the thickness and interfacial trap density of this layer is required to make predictions of the behaviour of the sensor in the environment under investigation and to predict its variation with time. Diode parameters, such as the ideality factor, barrier height and series resistance have been extracted from experimental measurements on Palladium Schottky Barrier diodes on 4H SiC, over a range of temperatures. The comparison of the parameters extracted from modified Norde function, Cheung's method and Thermonic Emission model has been performed. The variation in the barrier height obtained is quite marked between the different techniques. The reverse I-V characteristics have been used to extract thickness of the interfacial layer, by fitting to the experimental data using the TEBIL model to extract the value of Dit from ä and the ideality factor, assuming the interfacial layer is stoichiometric SiO2 . This allows a comparison between the effective interfacial layer behaviour for the different parameter extraction techniques and demonstrates that knowledge of this interfacial layer is influenced by the technique selected.

2019 ◽  
Vol 5 (10) ◽  
pp. eaax5733 ◽  
Author(s):  
T. Harada ◽  
S. Ito ◽  
A. Tsukazaki

High-temperature operation of semiconductor devices is widely demanded for switching/sensing purposes in automobiles, plants, and aerospace applications. As alternatives to conventional Si-based Schottky diodes usable only at 200°C or less, Schottky interfaces based on wide-bandgap semiconductors have been extensively studied to realize a large Schottky barrier height that makes high-temperature operation possible. Here, we report a unique crystalline Schottky interface composed of a wide-gap semiconductor β-Ga2O3 and a layered metal PdCoO2. At the thermally stable all-oxide interface, the polar layered structure of PdCoO2 generates electric dipoles, realizing a large Schottky barrier height of ~1.8 eV, well beyond the 0.7 eV expected from the basal Schottky-Mott relation. Because of the naturally formed homogeneous electric dipoles, this junction achieved current rectification with a large on/off ratio approaching 108 even at a high temperature of 350°C. The exceptional performance of the PdCoO2/β-Ga2O3 Schottky diodes makes power/sensing devices possible for extreme environments.


2008 ◽  
Vol 63 (3-4) ◽  
pp. 199-202 ◽  
Author(s):  
Ahmet Faruk Ozdemir ◽  
Adnan Calik ◽  
Guven Cankaya ◽  
Osman Sahin ◽  
Nazim Ucar

Au/n-GaAs Schottky barrier diodes (SBDs) have been fabricated. The effect of indentation on Schottky diode parameters such as Schottky barrier height (φb) and ideality factor (n) was studied by current-voltage (I-V) measurements. The method used for indentation was the Vickers microhardness test at room temperature. The experimental results showed that the I-V characteristics move to lower currents due to an increase of φb with increasing indentation weight, while contacts showed a nonideal diode behaviour.


2019 ◽  
Vol 26 (10) ◽  
pp. 1950073 ◽  
Author(s):  
N. NANDA KUMAR REDDY ◽  
P. ANANDA ◽  
V. K. VERMA ◽  
K. RAHIM BAKASH

We have fabricated Ni/[Formula: see text]-Si metal–semiconductor (MS) and Ni/Ta2O5/[Formula: see text]-Si metal-insulator–semiconductor (MIS) Schottky barrier diodes at room temperature and studied their current density–voltage (J–V) and capacitance–voltage (C–V) characteristic properties. The forward bias J–V characteristics of the fabricated MS and MIS devices have been evaluated with the help of the thermionic emission (TE) mechanism. Schottky barrier height (SBH) values of 0.73 and 0.84[Formula: see text]eV and ideality factor values of 1.75 and 1.46 are extracted using J–V measurements for MS and MIS Schottky barrier diodes without and with Ta2O5 interfacial oxide layer, respectively. It was noted that the incorporation of Ta2O5 interfacial oxide layer enhanced the value of SBH for the MIS device because this oxide layer produced the substantial barrier between Ni and [Formula: see text]-Si and this obtained barrier height value is better than the conventional metal/[Formula: see text]-Si (MS) Schottky diodes. The rectification ratio (RR) calculated at [Formula: see text][Formula: see text]V for the MS structure is found to be [Formula: see text] and the MIS structure is found to be [Formula: see text]. Using Chung’s method, the series resistance ([Formula: see text]) values are calculated using [Formula: see text]/[Formula: see text] vs I plot and are found to be 21,603[Formula: see text][Formula: see text] for the Ni/[Formula: see text]-Si (MS) and 5489[Formula: see text][Formula: see text] for the Ni/Ta2O5/[Formula: see text]-Si (MIS) structures, respectively. In addition, [Formula: see text] vs [Formula: see text] plot has been utilized to evaluate the series resistance ([Formula: see text]) values and are found to be 14,064[Formula: see text][Formula: see text] for the Ni/[Formula: see text]-Si (MS) and 2236[Formula: see text][Formula: see text] for the Ni/Ta2O5/[Formula: see text]-Si (MIS) structures, respectively. In conclusion, by analyzing the experimental results, it is confirmed that the good quality performance is observed in Ni/Ta2O5/[Formula: see text]-Si (MIS) type SBD when compared to Ni/[Formula: see text]-Si (MS) type SBD and can be accredited to the intentionally formed thin Ta2O5 interfacial oxide layer between Nickel and [Formula: see text]-type Si.


2011 ◽  
Vol 66 (8-9) ◽  
pp. 576-580 ◽  
Author(s):  
Nazim Ucar ◽  
Ahmet Faruk Özdemira ◽  
Durmus Ali Aldemira ◽  
Güven Çankayab

Abstract The effect of time on the characteristic parameters of Pb/p-Si Schottky diodes has been presented as a function of hydrostatic pressure. Current-voltage curves of the Pb=p-Si Schottky diodes have been measured at immediate, 15, 30, 60, and 120 min intervals under 1, 2, and 4 kbar hydrostatic pressure. It has been found that the values of the ideality factor have been approximately unchanged with increasing time. On the other hand, the barrier height of the Pb=p-Si structure slowly increase with increasing time, while these parameters also change with hydrostatic pressure. The diode shows nonideal current-voltage behaviour with an ideality factor greater than unity that can be ascribed to the interfacial layer and the interface states. In addition, the Schottky barrier height increases with a linear pressure coefficient of 92 meV=kbar, which is higher than the pressure coefficient of the silicon fundamental band gap.


2018 ◽  
Vol 25 (03) ◽  
pp. 1850064 ◽  
Author(s):  
K. ÇINAR DEMİR ◽  
S. V. KURUDIREK ◽  
S. OZ ◽  
M. BIBER ◽  
Ş. AYDOĞAN ◽  
...  

We fabricated 25 Au/[Formula: see text]-GaP/Al Schottky devices and investigated the influence of high electron irradiation, which has 12[Formula: see text]MeV on the devices, at room temperature. The X-ray diffraction patterns, scanning electron microscopic images and Raman spectra of a gallium phosphide (GaP) semiconductor before and after electron irradiation have been analyzed. Furthermore, some electrical measurements of the devices were carried out through the current–voltage ([Formula: see text]–[Formula: see text]) and capacitance–voltage ([Formula: see text]–[Formula: see text]) measurements. From the [Formula: see text]–[Formula: see text] characteristics, experimental ideality factor [Formula: see text] and barrier height [Formula: see text] values of these Schottky diodes have been determined before and after irradiation, respectively. The results have also been analyzed statically, and a gauss distribution has been obtained. The built-in potential [Formula: see text], barrier height [Formula: see text], Fermi level [Formula: see text] and donor concentration [Formula: see text] values have been determined from the reverse bias [Formula: see text]–[Formula: see text] and [Formula: see text] curves of Au/[Formula: see text]-GaP/Al Schottky barrier diodes at 100[Formula: see text]kHz before and after 12[Formula: see text]MeV electron irradiation. Furthermore, we obtained the series resistance values of Au/[Formula: see text]-GaP/Al Schottky barrier diodes with the help of different methods. Experimental results confirmed that the electrical characterization of the device changed with the electron irradiation.


2010 ◽  
Vol 405 (16) ◽  
pp. 3253-3258 ◽  
Author(s):  
M.A. Yeganeh ◽  
Sh. Rahmatollahpur ◽  
R. Sadighi-Bonabi ◽  
R. Mamedov

Sign in / Sign up

Export Citation Format

Share Document