Origins of the temperature dependence of the series resistance, ideality factor and barrier height based on the thermionic emission model for n-type GaN Schottky diodes

2010 ◽  
Vol 519 (2) ◽  
pp. 829-832 ◽  
Author(s):  
Yow-Jon Lin
2013 ◽  
Vol 313-314 ◽  
pp. 270-274
Author(s):  
M. Faisal ◽  
M. Asghar ◽  
Khalid Mahmood ◽  
Magnus Willander ◽  
O. Nur ◽  
...  

Temperature dependent current-voltage (I-V) and capacitance-voltage (C-V) measurements were utilized to understand the transport mechanism of Pd Schottky diodes fabricated on Zn- and O-faces of ZnO. From I-V measurements, in accordance with the thermionic emission mechanism theory, it was found that the series resistance Rsand the ideality factor n were strongly temperature dependent that decreased with increasing temperature for both the faces (Zn and O-face) of ZnO revealing that the thermionic emission is not the dominant process. The barrier height øB(I-V)increased with increasing temperature for both faces. The measured values of ideality factor, barrier height and series resistance for Zn- and O-faces at room temperature were 4.4, 0.60 eV, 217 Ω and 2.8, 0.49 eV, 251 Ω respectively. The capacitance-voltage (C–V) measurements were used to determine the doping concentration Nd, the built-in-potential Vbi, and the barrier height øB(C-V). The doping concentration was found to be decreased with increasing depth. The barrier height øB(C-V)calculated for O-polar and Zn-polar faces decreases with increasing temperature. The values of barrier height øB(C-V)determined from C-V measurements were found higher than the values of barrier height øB(I-V). Keeping in view the calculated values of ideality factor, barrier height, and series resistance shows that O-polar face is qualitatively better than Zn-polar face.


Author(s):  
Sabuhi Ganiyev ◽  
M. Azim Khairi ◽  
D. Ahmad Fauzi ◽  
Yusof Abdullah ◽  
N.F. Hasbullah

In this paper the effects of high energy (3.0 MeV) electrons irradiation over a dose ranges from 6 to 15 MGy at elevated temperatures 298 to 448 K on the current-voltage characteristics of 4H-SiC Schottky diodes were investigated. The experiment results show that after irradiation with 3.0 MeV forward bias current of the tested diodes decreased, while reverse bias current increased. The degradation of ideality factor, n, saturation current, Is, and barrier height, Phib, were not noticeable after the irradiation. However, the series resistance, Rs, has increased significantly with increasing radiation dose. In addition, temperature dependence current-voltage measurements, were conducted for temperature in the range of 298 to 448 K. The Schottky barrier height, saturation current, and series resistance, are found to be temperature dependent, while ideality factor remained constant. DOI: 10.21883/FTP.2017.12.45193.8646


1996 ◽  
Vol 39 (10) ◽  
pp. 1457-1462 ◽  
Author(s):  
M. Nathan ◽  
Z. Shoshani ◽  
G. Ashkinazi ◽  
B. Meyler ◽  
O. Zolotarevski

2011 ◽  
Vol 1406 ◽  
Author(s):  
Cleber A. Amorim ◽  
Olivia M. Berengue ◽  
Luana Araújo ◽  
Edson R. Leite ◽  
Adenilson J. Chiquito

ABSTRACTIn this work, we studied metal/SnO2 junctions using transport properties. Parameters such as barrier height, ideality factor and series resistance were estimated at different temperatures. Schottky barrier height showed a small deviation of the theoretical value mainly because the barrier was considered fixed as described by ideal thermionic emission-diffusion model. These deviations have been explained by assuming the presence of barrier height inhomogeneities. Such assumption can also explain the high ideality factor as well as the Schottky barrier height and ideality factor dependence on temperature.


2009 ◽  
Vol 609 ◽  
pp. 195-199
Author(s):  
A. Keffous ◽  
M. Kechouane ◽  
Tahar Kerdja ◽  
Y. Belkacem ◽  
K. Bourenane ◽  
...  

In this paper we present the study of a Schottky diode gas sensing by using porous SiC films with palladium as a catalytic metal. The Schottky diodes were used for the first time for hydrocarbon (C2H6) gas sensing. The properties of the porous SiC films formed by electrochemical method were investigated by scanning electron microscopy (SEM). The electrical measurements were made at room temperature (295 K) in different ambient. The effect of the porous surface structure was investigated by evaluating electrical parameters such as the ideality factor (n), barrier height (Bp) and series resistance (Rs). The porous layer significantly affects the electrical properties of the Schottky diodes. Analysis of current-voltage (I-V) characteristics showed that the forward current might be described by a classical thermal emission theory. The ideality factor determined by the I–V characteristics was found to be dependent on the SiC thickness. For a thinner SiC layer (0.16 µm), the electrical parameters n was found around 1.135, 0.7041 eV for a barrier height and 45  for a series resistance, but for a thicker one (1.6 µm) n, Bp and Rs were 1.368, 0.7756 eV and 130 , respectively. The low value of the series resistance obtained using Cheung’s method clearly indicated the high performance of the Schottky diode for thinner SiC layer. This effect showed the uniformity of the SiC layer. Finally, sensitivity around 66 % and selectivity of the sensors were reached by using the PSC layer at low voltages below 0.5 Volt.


2006 ◽  
Vol 911 ◽  
Author(s):  
Ming Hung Weng ◽  
Alton B. Horsfall ◽  
Nick G. Wright ◽  
Konstantin V. Vassilevski ◽  
Irina P. Nikitina

AbstractSchottky barrier diodes fabricated on Silicon carbide have been demonstrated as gas sensors for deployment in extreme environments. It has been shown that the interfacial layer formed at the Metal – Semiconductor junction, determines both the sensitivity and the reliability of the device. Hence, accurate knowledge of the thickness and interfacial trap density of this layer is required to make predictions of the behaviour of the sensor in the environment under investigation and to predict its variation with time. Diode parameters, such as the ideality factor, barrier height and series resistance have been extracted from experimental measurements on Palladium Schottky Barrier diodes on 4H SiC, over a range of temperatures. The comparison of the parameters extracted from modified Norde function, Cheung's method and Thermonic Emission model has been performed. The variation in the barrier height obtained is quite marked between the different techniques. The reverse I-V characteristics have been used to extract thickness of the interfacial layer, by fitting to the experimental data using the TEBIL model to extract the value of Dit from ä and the ideality factor, assuming the interfacial layer is stoichiometric SiO2 . This allows a comparison between the effective interfacial layer behaviour for the different parameter extraction techniques and demonstrates that knowledge of this interfacial layer is influenced by the technique selected.


2019 ◽  
Vol 26 (10) ◽  
pp. 1950073 ◽  
Author(s):  
N. NANDA KUMAR REDDY ◽  
P. ANANDA ◽  
V. K. VERMA ◽  
K. RAHIM BAKASH

We have fabricated Ni/[Formula: see text]-Si metal–semiconductor (MS) and Ni/Ta2O5/[Formula: see text]-Si metal-insulator–semiconductor (MIS) Schottky barrier diodes at room temperature and studied their current density–voltage (J–V) and capacitance–voltage (C–V) characteristic properties. The forward bias J–V characteristics of the fabricated MS and MIS devices have been evaluated with the help of the thermionic emission (TE) mechanism. Schottky barrier height (SBH) values of 0.73 and 0.84[Formula: see text]eV and ideality factor values of 1.75 and 1.46 are extracted using J–V measurements for MS and MIS Schottky barrier diodes without and with Ta2O5 interfacial oxide layer, respectively. It was noted that the incorporation of Ta2O5 interfacial oxide layer enhanced the value of SBH for the MIS device because this oxide layer produced the substantial barrier between Ni and [Formula: see text]-Si and this obtained barrier height value is better than the conventional metal/[Formula: see text]-Si (MS) Schottky diodes. The rectification ratio (RR) calculated at [Formula: see text][Formula: see text]V for the MS structure is found to be [Formula: see text] and the MIS structure is found to be [Formula: see text]. Using Chung’s method, the series resistance ([Formula: see text]) values are calculated using [Formula: see text]/[Formula: see text] vs I plot and are found to be 21,603[Formula: see text][Formula: see text] for the Ni/[Formula: see text]-Si (MS) and 5489[Formula: see text][Formula: see text] for the Ni/Ta2O5/[Formula: see text]-Si (MIS) structures, respectively. In addition, [Formula: see text] vs [Formula: see text] plot has been utilized to evaluate the series resistance ([Formula: see text]) values and are found to be 14,064[Formula: see text][Formula: see text] for the Ni/[Formula: see text]-Si (MS) and 2236[Formula: see text][Formula: see text] for the Ni/Ta2O5/[Formula: see text]-Si (MIS) structures, respectively. In conclusion, by analyzing the experimental results, it is confirmed that the good quality performance is observed in Ni/Ta2O5/[Formula: see text]-Si (MIS) type SBD when compared to Ni/[Formula: see text]-Si (MS) type SBD and can be accredited to the intentionally formed thin Ta2O5 interfacial oxide layer between Nickel and [Formula: see text]-type Si.


2016 ◽  
Vol 2016 ◽  
pp. 1-7 ◽  
Author(s):  
Mehmet Çavaş ◽  
Fahrettin Yakuphanoglu ◽  
Savaş Kaya

In the present study, we have investigated the effects of illumination intensity on the optical and electrical characteristics of the Al/CdFe2O4/p-Si/Al photodiode. A thin film of CdFe2O4 was fabricated using the sol-gel spin coating method that allows good thickness control and low-cost manufacturing as compared to alternative techniques. The current-voltage (I-V) of the Al/CdFe2O4/p-Si/Al photodiode was measured in the dark and under different illumination intensities. The photocurrent increased with higher luminous intensity and its sensitivity has a strong dependence on the reverse bias rising from 1.08⁎10-7 A under dark conditions to 6.11⁎10-4 A at 100 mW/cm2 of illumination. The parameters of the photodiode such as ideality factor and barrier height were calculated using the thermionic emission model. The ideality factor of the Al/CdFe2O4/p-Si/Al photodiode was found to be 4.4. The barrier height was found to be 0.88 eV. The capacitance-voltage (C-V) characteristics measured at different frequencies have strongly varied with frequency, decreasing with frequency. Consequently, the resulting interface density (Dit) value of the Al/CdFe2O4/p-Si/Al photodiode also decreased with higher frequency. Similarly, the fitted series resistance of the Al/CdFe2O4/p-Si/Al photodiode has declined with higher frequency.


2013 ◽  
Vol 446-447 ◽  
pp. 88-92
Author(s):  
Nathaporn Promros ◽  
Suguru Funasaki ◽  
Ryūhei Iwasaki ◽  
Tsuyoshi Yoshitake

n-Type nanocrystalline FeSi2/intrinsic Si/p-type Si heterojunctions were prepared by FTDCS. In order to estimate their diode parameters such as ideality factor, barrier height and series resistance, their current-voltage characteristics were measured in the temperature range from 300 to 77 K and analyzed on the basis of thermionic emission theory and Cheungs method. Based on thermionic emission theory, the ideality factor was calculated from the slope of the linear part from the forward lnJ-V characteristics. The barrier height was calculated once the saturation current density was derived from the straight line intercept of lnJ-V plot at a zero voltage. The obtained results exhibit an increase of ideality factor and a decrease of barrier height at low temperatures, which might be owing to inhomogeneity of material and non-uniformity of charge at the interface. Based on Cheungs method, the ideality factor and barrier height were estimated from y-axis intercept of dV/d (lnJ)J plot and y-axis intercept of H(J)J plot, respectively. The series resistance was analyzed from the slopes of dV/d (lnJ)J and H(J)J plots. The values of ideality factor and barrier height obtained from this method are in agreement with those obtained from the thermionic emission theory. The obtained series resistances from dV/d (lnJ)J and H(J)J plots, which were approximately equal to each others, were increased as the temperature decreased. This result should be owing to the increased ideality factor and remarkably reduced carrier concentrations at low temperatures.


Sign in / Sign up

Export Citation Format

Share Document