THE INFLUENCE OF HIGH-ENERGY ELECTRONS IRRADIATION ON SURFACE OF n-GaP AND ON Au/n-GaP/Al SCHOTTKY BARRIER DIODE

2018 ◽  
Vol 25 (03) ◽  
pp. 1850064 ◽  
Author(s):  
K. ÇINAR DEMİR ◽  
S. V. KURUDIREK ◽  
S. OZ ◽  
M. BIBER ◽  
Ş. AYDOĞAN ◽  
...  

We fabricated 25 Au/[Formula: see text]-GaP/Al Schottky devices and investigated the influence of high electron irradiation, which has 12[Formula: see text]MeV on the devices, at room temperature. The X-ray diffraction patterns, scanning electron microscopic images and Raman spectra of a gallium phosphide (GaP) semiconductor before and after electron irradiation have been analyzed. Furthermore, some electrical measurements of the devices were carried out through the current–voltage ([Formula: see text]–[Formula: see text]) and capacitance–voltage ([Formula: see text]–[Formula: see text]) measurements. From the [Formula: see text]–[Formula: see text] characteristics, experimental ideality factor [Formula: see text] and barrier height [Formula: see text] values of these Schottky diodes have been determined before and after irradiation, respectively. The results have also been analyzed statically, and a gauss distribution has been obtained. The built-in potential [Formula: see text], barrier height [Formula: see text], Fermi level [Formula: see text] and donor concentration [Formula: see text] values have been determined from the reverse bias [Formula: see text]–[Formula: see text] and [Formula: see text] curves of Au/[Formula: see text]-GaP/Al Schottky barrier diodes at 100[Formula: see text]kHz before and after 12[Formula: see text]MeV electron irradiation. Furthermore, we obtained the series resistance values of Au/[Formula: see text]-GaP/Al Schottky barrier diodes with the help of different methods. Experimental results confirmed that the electrical characterization of the device changed with the electron irradiation.

2006 ◽  
Vol 911 ◽  
Author(s):  
Ming Hung Weng ◽  
Alton B. Horsfall ◽  
Nick G. Wright ◽  
Konstantin V. Vassilevski ◽  
Irina P. Nikitina

AbstractSchottky barrier diodes fabricated on Silicon carbide have been demonstrated as gas sensors for deployment in extreme environments. It has been shown that the interfacial layer formed at the Metal – Semiconductor junction, determines both the sensitivity and the reliability of the device. Hence, accurate knowledge of the thickness and interfacial trap density of this layer is required to make predictions of the behaviour of the sensor in the environment under investigation and to predict its variation with time. Diode parameters, such as the ideality factor, barrier height and series resistance have been extracted from experimental measurements on Palladium Schottky Barrier diodes on 4H SiC, over a range of temperatures. The comparison of the parameters extracted from modified Norde function, Cheung's method and Thermonic Emission model has been performed. The variation in the barrier height obtained is quite marked between the different techniques. The reverse I-V characteristics have been used to extract thickness of the interfacial layer, by fitting to the experimental data using the TEBIL model to extract the value of Dit from ä and the ideality factor, assuming the interfacial layer is stoichiometric SiO2 . This allows a comparison between the effective interfacial layer behaviour for the different parameter extraction techniques and demonstrates that knowledge of this interfacial layer is influenced by the technique selected.


2019 ◽  
Vol 26 (10) ◽  
pp. 1950073 ◽  
Author(s):  
N. NANDA KUMAR REDDY ◽  
P. ANANDA ◽  
V. K. VERMA ◽  
K. RAHIM BAKASH

We have fabricated Ni/[Formula: see text]-Si metal–semiconductor (MS) and Ni/Ta2O5/[Formula: see text]-Si metal-insulator–semiconductor (MIS) Schottky barrier diodes at room temperature and studied their current density–voltage (J–V) and capacitance–voltage (C–V) characteristic properties. The forward bias J–V characteristics of the fabricated MS and MIS devices have been evaluated with the help of the thermionic emission (TE) mechanism. Schottky barrier height (SBH) values of 0.73 and 0.84[Formula: see text]eV and ideality factor values of 1.75 and 1.46 are extracted using J–V measurements for MS and MIS Schottky barrier diodes without and with Ta2O5 interfacial oxide layer, respectively. It was noted that the incorporation of Ta2O5 interfacial oxide layer enhanced the value of SBH for the MIS device because this oxide layer produced the substantial barrier between Ni and [Formula: see text]-Si and this obtained barrier height value is better than the conventional metal/[Formula: see text]-Si (MS) Schottky diodes. The rectification ratio (RR) calculated at [Formula: see text][Formula: see text]V for the MS structure is found to be [Formula: see text] and the MIS structure is found to be [Formula: see text]. Using Chung’s method, the series resistance ([Formula: see text]) values are calculated using [Formula: see text]/[Formula: see text] vs I plot and are found to be 21,603[Formula: see text][Formula: see text] for the Ni/[Formula: see text]-Si (MS) and 5489[Formula: see text][Formula: see text] for the Ni/Ta2O5/[Formula: see text]-Si (MIS) structures, respectively. In addition, [Formula: see text] vs [Formula: see text] plot has been utilized to evaluate the series resistance ([Formula: see text]) values and are found to be 14,064[Formula: see text][Formula: see text] for the Ni/[Formula: see text]-Si (MS) and 2236[Formula: see text][Formula: see text] for the Ni/Ta2O5/[Formula: see text]-Si (MIS) structures, respectively. In conclusion, by analyzing the experimental results, it is confirmed that the good quality performance is observed in Ni/Ta2O5/[Formula: see text]-Si (MIS) type SBD when compared to Ni/[Formula: see text]-Si (MS) type SBD and can be accredited to the intentionally formed thin Ta2O5 interfacial oxide layer between Nickel and [Formula: see text]-type Si.


2017 ◽  
Vol 110 (8) ◽  
pp. 083503 ◽  
Author(s):  
V. V. Kozlovski ◽  
A. A. Lebedev ◽  
M. E. Levinshtein ◽  
S. L. Rumyantsev ◽  
J. W. Palmour

Author(s):  
Sabuhi Ganiyev ◽  
M. Azim Khairi ◽  
D. Ahmad Fauzi ◽  
Yusof Abdullah ◽  
N.F. Hasbullah

In this paper the effects of high energy (3.0 MeV) electrons irradiation over a dose ranges from 6 to 15 MGy at elevated temperatures 298 to 448 K on the current-voltage characteristics of 4H-SiC Schottky diodes were investigated. The experiment results show that after irradiation with 3.0 MeV forward bias current of the tested diodes decreased, while reverse bias current increased. The degradation of ideality factor, n, saturation current, Is, and barrier height, Phib, were not noticeable after the irradiation. However, the series resistance, Rs, has increased significantly with increasing radiation dose. In addition, temperature dependence current-voltage measurements, were conducted for temperature in the range of 298 to 448 K. The Schottky barrier height, saturation current, and series resistance, are found to be temperature dependent, while ideality factor remained constant. DOI: 10.21883/FTP.2017.12.45193.8646


2014 ◽  
Vol 2014 (HITEC) ◽  
pp. 000058-000060
Author(s):  
Tomas Hjort ◽  
Adolf Schöner ◽  
Andy Zhang ◽  
Mietek Bakowski ◽  
Jang-Kwon Lim ◽  
...  

Electrical characteristics of 4H-SiC Schottky barrier diodes, based on buried grid design are presented. The diodes, rated to 1200V/10A and assembled into high temperature capable TO254 packages, have been tested and studied up to 250°C. Compared to conventional SiC Schottky diodes, Ascatron's buried grid SiC Schottky diode demonstrates several orders of magnitude reduced leakage current at high temperature operation.


Sign in / Sign up

Export Citation Format

Share Document