280 nm Emission Deep UV LEDs with Integrated Fresnel Microlenses

2006 ◽  
Vol 916 ◽  
Author(s):  
Mikhail E Gaevski ◽  
Maxim Shatalov ◽  
Shuai Wu ◽  
Asif M Khan

AbstractWe report on the integration of flowable oxide based Fresnel microlenses with AlGaN based 280 nm light emitting diodes (LED). The lenses were fabricated on the back side of the LED sapphire substrates using direct electron beam writing. Ten concentric rings with different width and variable thickness were designed for 360 degree phase correction. Within each ring the thickness was varied in five steps to approximate a linear profile. The width of each thickness step varied from 100 nm to several microns. Outer diameter of the lens was 65μm. A focal distance of 68 μm was measured for the fabricated microlenses. At the focal plane a FWHM of intensity profile as small as 14 μm was measured for lenses integrated with 30 μm diameter UV LEDs . The maximum intensity at focal plane exceeded the background radiation by a factor of 50. Comparison of the LED performance before and after the lens fabrication did not reveal any degradation of integral efficiency of devices. These results demonstrate the feasibility of using flowable oxide Fresnel microlenses in optical systems based on micro-pixel deep UV AlGaN LEDs.

2005 ◽  
Vol 892 ◽  
Author(s):  
M. Asif Khan

AbstractIn this paper we will describe the problems in growth and fabrication of deep UV LED devices and the approaches that we have used to grow AlGaN-based multiple quantum well deep UV LED structures and to overcome issues of doping efficiency, cracking, and slow growth rates both for the n- and the p-type layers of the device structures. Several innovations in structure growth, device structure design and fabrication and packaging have led to the fabrication of devices with emission from 250-300 nm and cw-milliwatt powers at pump currents of only 20 mA (Vf ≤ 6 V). Record wall plug efficiencies above 1.5 % are now achievable for devices with emission at 280 nm. Thermal management and a proper device design are not only key factors in achieving these record performance numbers but are also crucial to device reliability. We will also discuss some of our initial research to clarify the factors influencing the lifetime of the deep UV LEDs. In addition to our own work, we will review the results from the excellent research carried out at several other laboratories worldwide.


2009 ◽  
Vol 20 (12) ◽  
pp. 125707 ◽  
Author(s):  
Vinila Bedekar ◽  
Dimple P Dutta ◽  
M Mohapatra ◽  
S V Godbole ◽  
R Ghildiyal ◽  
...  

2014 ◽  
Vol 2 (2) ◽  
pp. 312-318 ◽  
Author(s):  
Jun-Cheng Zhang ◽  
Yun-Ze Long ◽  
Hong-Di Zhang ◽  
Bin Sun ◽  
Wen-Peng Han ◽  
...  

2021 ◽  
Vol 118 (23) ◽  
pp. 231102
Author(s):  
Youn Joon Sung ◽  
Dong-Woo Kim ◽  
Geun Young Yeom ◽  
Kyu Sang Kim

2020 ◽  
Vol 19 (8) ◽  
pp. 1009-1021
Author(s):  
Tae-Rin Kwon ◽  
Sung-Eun Lee ◽  
Jong Hwan Kim ◽  
You Na Jang ◽  
Su-Young Kim ◽  
...  

Ultraviolet light-emitting diodes (UV-LEDs) are a novel light source for phototherapy.


2007 ◽  
Vol 46 (No. 23) ◽  
pp. L537-L539 ◽  
Author(s):  
Vinod Adivarahan ◽  
Qhalid Fareed ◽  
Surendra Srivastava ◽  
Thomas Katona ◽  
Mikhail Gaevski ◽  
...  

2012 ◽  
Vol 1415 ◽  
Author(s):  
K. Malachowski ◽  
S. Severi ◽  
R. Van Hoof ◽  
S. Sangameswaran ◽  
S. Genda ◽  
...  

ABSTRACTAbrasive blade dicing is the most common technique for die separation. In this work an alternative dry and non-abrasive die separation method, which is known as "Stealth dicing", is assessed for surface-sensitive MEMS (Micro Electro Mechanical Systems) wafers. The dicing performance and capability of the system is investigated on 200mm full thickness wafers with and without MEMS structures. The diced wafers are analyzed with respect to the silicon cutting quality, possible particle contamination, the condition of functional structures and their mechanical and electrical functionality. In addition the performance and limitations of two different Stealth Dicing Engine (SDE) types, SDE01 and SDE03, are compared to each other with respect to their performance on MEMS wafer dicing.From this work design rules and proper dimensions of the scribe line can be determined. Process integration solutions, describing steps before and after the Stealth dicing process, including the contact-less dicing tape application to the wafer back side and the final die separation method by tape stretching, are presented. It was also found that the SDE03 laser with its outstanding performance in terms of process speed and separation quality can bring a breakthrough for applying this technology for MEMS wafers.


Author(s):  
Hitoshi Okada ◽  
Susumu Itoh ◽  
Shohei Kawamoto ◽  
Miyo Ozaki ◽  
Takashi Kusaka

Objective Investigation of the reactivity of fractions of bilirubin photoisomers with the vanadic acid oxidation method. Methods Bilirubin photoisomers were prepared by irradiating a bilirubin/human serum albumin solution with blue light emitting diode. Direct bilirubin and bilirubin fractions were measured using the vanadic acid oxidation method and high-performance liquid chromatography in the sample before and after irradiation. Results Direct bilirubin was increased in the solution containing bilirubin photoisomers. ( EE)-/( EZ) -cyclobilirubin-IXα and ( ZE)-/( EZ)-bilirubin-IXα completely disappeared after the addition of vanadic acid. Conclusion Bilirubin photoisomers reacted as direct bilirubin in the vanadic acid oxidation method.


2013 ◽  
Vol 10 (11) ◽  
pp. 1521-1524 ◽  
Author(s):  
Noritoshi Maeda ◽  
Hideki Hirayama

Sign in / Sign up

Export Citation Format

Share Document