Using Self-assembly and Selective Chemical Vapor Deposition for Precise Positioning of Individual Germanium Nanoparticles on Hafnia

2006 ◽  
Vol 921 ◽  
Author(s):  
Shawn S Coffee ◽  
Wyatt A Winkenwerder ◽  
Scott K Stanley ◽  
Shahrjerdi Davood ◽  
Sanjay K Banerjee ◽  
...  

AbstractGermanium nanoparticle nucleation was studied in organized arrays on HfO2 using a SiO2 thin film mask with ~20-24 nm pores and a 6×1010 cm-2 pore density. Poly(styrene-b-methyl methacrylate) diblock copolymer was employed to pattern the SiO2 film. Hot wire chemical vapor deposition produced Ge nanoparticles using 4-19 monolayer Ge exposures. By seeding adatoms on HfO2 at room temperature before growth and varying growth temperatures between 725-800 K, nanoparticle size was demonstrated to be limited by Ge etching of SiO2 pore walls.

2006 ◽  
Vol 45 (4B) ◽  
pp. 3516-3518 ◽  
Author(s):  
Shui-Yang Lien ◽  
Dong-Sing Wuu ◽  
Hsin-Yuan Mao ◽  
Bing-Rui Wu ◽  
Yen-Chia Lin ◽  
...  

2003 ◽  
Vol 430 (1-2) ◽  
pp. 220-225 ◽  
Author(s):  
B. Stannowski ◽  
J.K. Rath ◽  
R.E.I. Schropp

2006 ◽  
Vol 910 ◽  
Author(s):  
Farhad Taghibakhsh ◽  
K.S. Karim

AbstractFabrication of hot-wire chemical vapor deposition (HWCVD) of amorphous silicon (a-Si) thin film transistors (TFT) on thin polyamide sheets is reported. A single graphite filament at 1500 °C was used for HWCVD and device quality amorphous silicon films were deposited with no thermal damage to plastic substrate. Top-gate staggered thin film transistors (TFTs) were fabricated at 150°C using hot-wire deposited a-Si channel, Plasma enhanced chemical vapor deposition (PECVD) silicon nitride gate dielectric, and microcrystalline n+ drain/source contacts. Low leakage current of 5×10-13 A, high switching current ratio of 1.3×107, and small sub threshold swing of 0.3 V/dec was obtained for TFTs with aspect ratio of 1300μm/100μm. The field effect mobility was extracted to be 0.34 cm2/V.s.


10.30544/128 ◽  
2015 ◽  
Vol 21 (1) ◽  
pp. 7-14
Author(s):  
Meysam Zarchi ◽  
Shahrokh Ahangarani

The effect of new growth techniques on the mobility and stability of amorphous silicon (a-Si:H) thin film transistors (TFTs) has been studied. It was suggested that the key parameter controlling the field-effect mobility and stability is the intrinsic stress in the a-Si:H layer. Amorphous and microcrystalline silicon films were deposited by radiofrequency plasma enhanced chemical vapor deposition (RF-PECVD) and hot-wire chemical vapor deposition (HW-CVD) at 100 ºC and 25 ºC. Structural properties of these films were measured by Raman Spectroscopy. Electronic properties were measured by dark conductivity, σd, and photoconductivity, σph. For amorphous silicon films deposited by RF-PECVD on PET, photosensitivity's of >105 were obtained at both 100 º C and 25 ºC. For amorphous silicon films deposited by HW-CVD, a photosensitivity of > 105 was obtained at 100 ºC. Microcrystalline silicon films deposited by HW-CVD at 95% hydrogen dilution show σph~ 10-4 Ω-1cm-1, while maintaining a photosensitivity of ~102 at both 100 ºC and 25 ºC. Microcrystalline silicon films with a large crystalline fraction (> 50%) can be deposited by HW-CVD all the way down to room temperature.


Sign in / Sign up

Export Citation Format

Share Document