Transport Properties and Conduction Band Offset of n-ZnO/n-6H-SiC Heterostructures

2006 ◽  
Vol 957 ◽  
Author(s):  
Yahya Alivov ◽  
Xiao Bo ◽  
Fan Qian ◽  
Daniel Johnstone ◽  
Cole Litton ◽  
...  

ABSTRACTThe conduction band offset of n-ZnO/n-6H-SiC heterostructures fabricated by rf-sputtered ZnO on commercial n-type 6H-SiC substrates has been measured. Temperature dependent current-voltage characteristics, photocapacitance, and deep level transient spectroscopy measurements showed the conduction band offsets to be 1.25 eV, 1.1 eV, and 1.22 eV, respectively.

1993 ◽  
Vol 325 ◽  
Author(s):  
Z.C. Huang ◽  
C.R. Wie

AbstractDeep levels have been measured in molecular beam epitaxy grown Ga0.51In0.49P/GaAs heterostructure by double correlation deep level transient spectroscopy. Gold(Au) and Aluminum (Al) metals were used for Schottky contact. A contact-related hole trap with an activation energy of 0.50-0.75eV was observed at the A1/GaInP interface, but not at the Au/GaInP interface. To our knowledge, this contact-related trap has not been reported before. We attribute this trap to the oxygen contamination, or a vacancy-related defect, VIn or VGa. A new electron trap at 0.28eV was also observed in both Au- and Al-Schottky diodes. Its depth profile showed that it is a bulk trap in GaInP epilayer. The temperature dependent current-voltage characteristics (I-V-T) show a large interface recombination current at the GaInP surface due to the Al-contact. Concentration of the interface trap and the magnitude of recombination current are both reduced by a rapid thermal annealing at/or above 450°C after the aluminum deposition.


2001 ◽  
Vol 693 ◽  
Author(s):  
Z-Q. Fang ◽  
D.C. Look ◽  
P. Visconti ◽  
C. Lu ◽  
D. Wang ◽  
...  

AbstractDeep traps in a 300-m m-thick freestanding GaN sample were characterized by deep level transient spectroscopy (DLTS), using Schottky barrier diodes (SBDs) fabricated on the Ga polarity surface. Most of the SBDs show nearly ideal current-voltage characteristics, with both forward and reverse currents controlled by the thermionic emission mechanism. Five common traps, which include A1 (1.0 eV), A (0.66 eV), B (0.59 eV), C (0.35 eV), and D (0.25 eV), can be consistently observed in all SBDs. Two of them, A1 and C, are related to surface damage. Surprisingly, some new traps can be found in the DLTS spectra of some SBDs if higher reverse biases are used in the measurements. However, they cannot be fitted by DLTS simulations, and are likely associated with parasitic capacitance somewhere in the cryostat.


Sign in / Sign up

Export Citation Format

Share Document