Molecular Multilayer Organic Solar Cells with Large Excitonic Diffusion Length

2006 ◽  
Vol 965 ◽  
Author(s):  
Seunghyup Yoo ◽  
William J Potscavage ◽  
Benoit Domercq ◽  
Sung-Ho Han ◽  
Dean Levi ◽  
...  

ABSTRACTWe report on the photovoltaic properties of organic solar cells based on pentacene and C60 thin films. A peak external quantum efficiency (EQE) of 69 % at a wavelength of λ = 668 nm is achieved upon optimization of the exciton blocking layer (EBL) thickness. Complex optical functions of pentacene films are measured as a function of wavelength by spectroscopic ellipsometry and used to analyze the EQE spectra. Detailed analysis of the EQE spectra indicate that the pentacene layers exhibit large excitonic diffusion lengths of ∼70 nm and that the performance improvement in EQE can be attributed to the influence of the thickness of the EBL layer on the carrier collection efficiency.

2014 ◽  
Vol 553 ◽  
pp. 161-165 ◽  
Author(s):  
Wonmok Lee ◽  
Incheol Kim ◽  
Ilwoo Ok ◽  
Dahee Ahn ◽  
Hyunjung Lee ◽  
...  

2005 ◽  
Vol 871 ◽  
Author(s):  
S. Yoo ◽  
B. Domercq ◽  
B. Kippelen

AbstractWe report on the photovoltaic properties of efficient multilayer devices based on pentacene thin films as a function of light intensity. Light-induced effects are characterized by the refined equivalent circuit model which incorporates an additional shunt resistance and an additional diode whose properties are function of the light intensity. Relative effects of these intensity-dependent parameters as well as the route to further optimization are discussed.


2007 ◽  
Vol 51 (10) ◽  
pp. 1367-1375 ◽  
Author(s):  
Seunghyup Yoo ◽  
William J. Potscavage ◽  
Benoit Domercq ◽  
Sung-Ho Han ◽  
Tai-De Li ◽  
...  

2020 ◽  
Vol 89 (3) ◽  
pp. 30201 ◽  
Author(s):  
Xi Guan ◽  
Shiyu Wang ◽  
Wenxing Liu ◽  
Dashan Qin ◽  
Dayan Ban

Organic solar cells based on planar copper phthalocyanine (CuPc)/C60 heterojunction have been characterized, in which a 2 nm-thick layer of bathocuproine (BCP) is inserted into the CuPc layer. The thin layer of BCP allows hole current to tunnel it through but blocks the exciton diffusion, thereby altering the steady-state exciton profile in the CuPc zone (zone 1) sandwiched between BCP and C60. The short-circuit current density (JSC) of device is limited by the hole-exciton scattering effect at the BCP/CuPc (zone 1) interface. Based on the variation of JSC with the width of zone 1, the exciton diffusion length of CuPc is deduced to be 12.5–15 nm. The current research provides an easy and helpful method to determine the exciton diffusion lengths of organic electron donors.


Author(s):  
Yiqun Xiao ◽  
Jun Yuan ◽  
Guodong Zhou ◽  
Ka Chak Ngan ◽  
Xinxin Xia ◽  
...  

Researchers are endeavoring to decode the fundamental reasons for the non-fullerene acceptor, Y6, to deliver high-performance organic solar cells. In this manuscript, we tackle this problem from the molecular packing...


2021 ◽  
Vol 13 (3) ◽  
pp. 3969-3978
Author(s):  
Yun Xiao ◽  
Haibin Wang ◽  
Fumiyasu Awai ◽  
Naoyuki Shibayama ◽  
Takaya Kubo ◽  
...  

Author(s):  
Hu Dingqin ◽  
Hua Tang ◽  
Haiyan Chen ◽  
Jie Lv ◽  
Shirong Lu ◽  
...  

Ternary strategy is promising to enhance the photovoltaic properties of organic solar cells (OSCs). Nevertheless, it is full of challenging when this approach involving only small molecule. Herein, a fullerene...


2021 ◽  
Author(s):  
Yanming Sun ◽  
Yunhao Cai ◽  
Qian Li ◽  
Guanyu Lu ◽  
Hwa Sook Ryu ◽  
...  

Abstract The development of high-performance organic solar cells (OSCs) with thick active layers is of crucial importance for the roll-to-roll printing of large-area solar panels. Unfortunately, increasing the active layer thickness usually results in a significant reduction in efficiency. Herein, we fabricated efficient thick-film OSCs with an active layer consisting of one polymer donor and two non-fullerene acceptors. The two acceptors were found to possess enlarged exciton diffusion length in the mixed phase, which is beneficial to exciton generation and dissociation. Additionally, layer by layer approach was employed to optimize the vertical phase separation. Benefiting from the synergetic effects of enlarged exciton diffusion length and graded vertical phase separation, a record high efficiency of 17.31% (certified value of 16.9%) was obtained for the 300 nm-thick OSC, with an unprecedented short-circuit current density of 28.36 mA cm−2, and a high fill factor of 73.0%. Moreover, the device with an active layer thickness of 500 nm also shows a record efficiency of 15.21%. This work provides new insights into the fabrication of high-efficiency OSCs with thick active layers.


Sign in / Sign up

Export Citation Format

Share Document