Phase Transition and Dielectric Tunability of Chemical Solution Deposited (Pb0.35Sr0.65)(Zr0.5Ti0.5)O3 Thin Films on Pt/ZrO2/SiO2/Si Substrates

2007 ◽  
Vol 1034 ◽  
Author(s):  
Naba K Karan ◽  
Marilin Perez ◽  
Jose Saavedra ◽  
Dillip K Pradhan ◽  
Reji Thomas ◽  
...  

Abstract(Pb0.35Sr0.65)(Zr0.5Ti0.5)O3 thin films were grown on Pt/ZrO2/SiO2/Si substrates by chemical solution deposition. As-deposited (pyrolysed at 500°C) films were amorphous and single phase films were obtained at temperature as low as 550°C with a 30 nm SrTiO3 seed layer. Dielectric constant and loss tangent at room temperature were 210 and 0.022, respectively at 100 kHz for the film annealed at 700°C. Frequency dispersion of the dielectric properties was low. The phase transition temperature (ferroelectric to paraelectric) was well below the room temperature and was around 220 K. The room temperature tunability and the k-factor at 500 kV/cm was around 45% and 16, respectively.

2013 ◽  
Vol 582 ◽  
pp. 59-62 ◽  
Author(s):  
Narimichi Makino ◽  
Bong Yeon Lee ◽  
Makoto Moriya ◽  
Wataru Sakamoto ◽  
Takashi Iijima ◽  
...  

Lead-free ferroelectric (Bi0.5Na0.5)TiO3(BNT) thin films were prepared by chemical solution deposition. BNT and Mn-doped BNT precursor thin films crystallized in the perovskite single phase at 700 °C on Pt/TiOx/SiO2/Si substrates. The leakage current density of the perovskite BNT films, especially in the high applied field region, was reduced by doping with a small amount of Mn. Also, Mn doping markedly improved the ferroelectric properties of the films. 0.5 and 1.0 mol% Mn-doped BNT thin films exhibited well-shaped ferroelectric polarization (P) electric field (E) hysteresis loops at room temperature. Furthermore, the 1 mol% Mn-doped BNT films showed a typical field-induced strain loop, and the effectived33values were estimated to be about 60 pm/V.


2021 ◽  
Vol 21 (4) ◽  
pp. 2681-2686
Author(s):  
Nguyen Ngoc Minh ◽  
Bui Van Dan ◽  
Nguyen Duc Minh ◽  
Guus Rijnders ◽  
Ngo Duc Quan

Lead-free Bi0.5K0.5TiO3 (BKT) ferroelectric films were synthesized on Pt/Ti/SiO2/Si substrates via the chemical solution deposition. The influence of the excess potassium on the microstructures and the ferroelectric properties of the films was investigated in detail. The results showed that the BKT films have reached the well-crystallized state in the single-phase perovskite structure with 20 mol.% excess amount of potassium. For this film, the ferroelectric properties of the films were significantly enhanced. The remnant polarization (Pr) and maximum polarization (Pm) reached the highest values of 9.4 μC/cm2 and 32.2 μC/cm2, respectively, under the electric field of 400 kV/cm.


2014 ◽  
Vol 70 (a1) ◽  
pp. C725-C725
Author(s):  
Josef Bursik ◽  
Radomir Kuzel ◽  
Karel Knizek ◽  
Ivo Drbohlav

Hexagonal ferrites (M, Y, Z-type) represent a new diverse class of magnetoelectric (ME) multiferroics, where ME effect is driven by complex magnetic order. Integration of ME materials with standard semiconductor technology is important for ultimate realization of ME functionalities. They have the potential to display ME coupling under low magnetic field bias and at temperatures close to room temperature. Methods based on sol–gel transition offer possibility of low cost and efficient way for the evaluation of new material system. The single phase, epitaxial thin films of Y-type hexagonal ferrite has been prepared and studied. Thin films of Ba2Zn2Fe12O22(Y) hexaferrite were prepared through the chemical solution deposition method on SrTiO3(111)(ST) single crystal substrates using epitaxial SrFe12O19(M) hexaferrite thin layer as a seed template layer. The process of crystallization was mainly investigated by means of X-ray diffraction and atomic force microscopy. A detailed inspection revealed that growth of seed layer starts through the break-up of initially continuous film into high density of well-oriented isolated grains with expressive shape anisotropy and hexagonal habit.The vital parameters of the seed layer, i.e. thickness, substrate coverage,crystallization conditions and temperature ramp were optimized with the aim to obtain epitaxially crystallized Y phase. By overcoating this seed layer, Y phase prepared under optimum deposition and heat treatment conditions presents a (001) orientation perpendicular to the substrate. Perfect parallel in-plane alignment of the hexagonal cells of SrTiO3substrate and both hexaferrite phases was proved by fast ω and φ scan measurements on sets of several diffraction planes at asymmetric orientations, and also by pole figures. The soft magnetic character and existence of pronounced magnetic anisotropy in Y films were confirmed by room temperature measurements of magnetization.


2007 ◽  
Vol 14 (01) ◽  
pp. 147-150 ◽  
Author(s):  
DONGMEI YANG ◽  
CHANGHONG YANG ◽  
CHUNXUE YUAN ◽  
XIN YIN ◽  
JIANRU HAN

Crack-free Sm-doped Bi 2 Ti 2 O 7( Sm : Bi 2 Ti 2 O 7) thin films with a strong (111) orientation have been prepared on p-Si (111) by chemical solution deposition (CSD). The structural properties and crystallizations were studied by X-ray diffraction. The surface morphology and quality were examined using atomic force microscopy (AFM). The dielectric constant and loss factor at different frequencies were also evaluated at room temperature. Their insulation was studied, too. The films exhibit better insulating property than does the pure Bi 2 Ti 2 O 7.


2020 ◽  
Vol 8 (12) ◽  
pp. 4234-4245 ◽  
Author(s):  
Carlos Gumiel ◽  
Teresa Jardiel ◽  
David G. Calatayud ◽  
Thomas Vranken ◽  
Marlies K. Van Bael ◽  
...  

BiFeO3 single-phase thin films with an effective and tuneable multiferroic response are obtained in aqueous media by using mild processing conditions.


RSC Advances ◽  
2016 ◽  
Vol 6 (82) ◽  
pp. 78629-78635 ◽  
Author(s):  
Linghua Jin ◽  
Xianwu Tang ◽  
Renhuai Wei ◽  
Bingbing Yang ◽  
Jie Yang ◽  
...  

Multiferroic BiFeO3 (BFO) thin films with a thickness larger than 400 nm are grown on solution-derived LaNiO3 coated Si substrates via chemical solution deposition.


2016 ◽  
Vol 4 (39) ◽  
pp. 9331-9342 ◽  
Author(s):  
F. M. Pontes ◽  
A. J. Chiquito ◽  
W. B. Bastos ◽  
Marcelo A. Pereira-da-Silva ◽  
E. Longo

Single-phase Pb0.50Ba0.50Ti1−xFexO3 (PBTF) polycrystalline thin films with different Fe doping contents were prepared on Pt/Ti/SiO2/Si substrates using a chemical solution deposition method.


2002 ◽  
Vol 748 ◽  
Author(s):  
Apurba Laha ◽  
S. B. Krupanidhi ◽  
S. Saha

ABSTRACTThe dielectric response of BaBi2Nb2O9 (BBN) thin films has been studied as a function of frequency over a wide range of temperatures. Both dielectric constant and loss tangent of BBN thin films showed a ‘power law’ dependence with frequency, which was analyzed using the Jonscher's universal dielectric response model. Theoretical fits were utilized to compare the experimental results and also to estimate the value of temperature dependence parameters such as n(T) and a(T) used in the Jonscher's model. The room temperature dielectric constant (ε') of the BBN thin films was 214 with a loss tangent (tanδ) of 0.04 at a frequency of 100 kHz. The films exhibited the second order dielectric phase transition from ferroelectric to paraelectric state at a temperature of 220 °C. The nature of phase transition was confirmed from the temperature dependence of dielectric constant and sponteneous polarization,respectively. The calculated Currie constant for BBN thin films was 4 × 105°C.


Sign in / Sign up

Export Citation Format

Share Document