Enhancement of Ferroelectric Properties of Epitaxial BiFeO3 Thin Films on La-doped SrTiO3 Single Crystal

2008 ◽  
Author(s):  
Seiji Nakashima ◽  
Jung Min Park ◽  
Takeshi Kanashima ◽  
Hironori Fujisawa ◽  
Masaru Shimizu ◽  
...  
2007 ◽  
Vol 1034 ◽  
Author(s):  
Seiji Nakashima ◽  
Yoshitaka Nakamura ◽  
Masanori Okuyama

AbstractBi-layer-structured mutiferroic Bi5Ti3FeO15 (BTFO15) (m = 4) and natural-superlattice-structured Bi4Ti3O12- Bi5Ti3FeO15 (BIT-BTFO15) (m = 3-4) thin films have been prepared on (001) and (110) oriented SrTiO3 (STO) single crystal substrates by using pulsed laser deposition. X-ray diffraction patterns of these thin films on (00l) STO single crystals shows the obtained thin films were (00l)-oriented layer-perovskite single phase, and BIT-BTFO15 (m = 3-4) natural-superlattice-structure has also obtained. On (110) STO single crystal, layer perovskite (11l) oriented thin films have been also obtained. For characterizing ferroelectric properties, these thin films have been prepared on (001) and (110) oriented La-doped (3.73 wt%) STO single crystal substrates. From ferroelectric D-E hysteresis loops measurements, BTFO15 (m = 4) and BIT-BTFO (m = 3-4) thin films on (110) La-doped STO single crystals shows good ferroelectric hysteresis loops and their double remanent polarizations (2Pr) were 47 μC/cm2 and 44 μC/cm2, respectively. However, these thin films on (001) La-doped STO single crystals do not show ferroelectric characteristics.


1993 ◽  
Vol 321 ◽  
Author(s):  
Chianping Ye ◽  
Paul Baude ◽  
Dennis L. Polla

ABSTRACTThin LiTaO3 films were prepared by spin coating of polymerized sol-gel precursor solution. Films have been deposited on single crystal silicon substrate, Ti/Pt or SiO2 coated silicon substrate. Films were characterized by x-ray diffraction, dielectric and pyroelectric Measurements. High Curie temperature (above 550 °C) was assumed for LiTaO3 thin films from the temperature dependence of dielectric constant. Replacing 35% of tantalum by titanium atoms in the LiTaO3 precursor solution has resulted the thin films with Curie temperature of 330 °C. The lower Curie temperature leads to the larger pyroelectric coefficient at room-temperature, which is more than double that of the undoped LiTaO3 thin films. The dielectric, pyroelectric, and ferroelectric properties have been compared to the single crystal LiTaO3 and ceramic Li0.91Ta0.73Ti0.36O3. LiTaO3 thin films are available by sol-gel process at low temperature, and their properties may possibly be controlled by varying the composition of the sol-gel precursor solution.


2000 ◽  
Vol 655 ◽  
Author(s):  
Joon Hyeong Kim ◽  
Jin Young Kim ◽  
Hyeong Joon Kim

Abstract(Bi,La)4Ti3O12(BLT) thin films were prepared on Si(100) substrates by the pulse injection metalorganic chemical vapor deposition (MOCVD) process, in which Ti and La precursors were injected with periodic pauses while Bi precursor was supplied continuously. In case of the pulse injection method, the film composition was relatively uniform and the Bi content at the interface was relatively uniform and the Bi content at the interface was increased. The BLT films, which were deposited by the pulse injection MOCVD, showed better crystallinity and thinner ionterfacial amorphous layer than the continuous BLT films. The continuous BLT films, although measured at 1 MHz showed similar C-V characteristics to those measured at low frequency region, and their flatband voltages also shifted severely to the negative voltage direction. On the other hand, the pulse BLT films exhibited clockwise ferroelectric hysteresis in the C-V curves. The memory window and the leakage current density were about 2V and 1.46×10−7 A/cm2 at 9V (180 kV/cm), respectively.


2005 ◽  
Vol 70 (1) ◽  
pp. 131-140 ◽  
Author(s):  
K. Wasa ◽  
I. Kanno ◽  
T. Suzuki ◽  
S. H. Seo ◽  
D. Y. Noh ◽  
...  

RSC Advances ◽  
2020 ◽  
Vol 10 (31) ◽  
pp. 18039-18043
Author(s):  
Wanqiong Dai ◽  
Yuanxiang Li ◽  
Caihong Jia ◽  
Chaoyang Kang ◽  
Mengxin Li ◽  
...  

An ultrathin (6.2 nm) ferroelectric La0.1Bi0.9FeO3 (LBFO) film was epitaxially grown on a 0.7 wt% Nb-doped SrTiO3 (001) single-crystal substrate by carrying out pulsed laser deposition to form a Pt/La0.1Bi0.9FeO3/Nb-doped SrTiO3 heterostructure.


Sign in / Sign up

Export Citation Format

Share Document