In vivo Monitoring of Gold Nanorods and Tissue Damage Mediated with Their Photothermal Effect

2008 ◽  
Vol 1138 ◽  
Author(s):  
Takuro Niidome ◽  
Yasuyuki Akiyama ◽  
Kohei Shimoda ◽  
Takahito Kawano ◽  
Takeshi Mori ◽  
...  

AbstractGold nanorods have a strong surface plasmon band at the near infrared region. The absorbed light energy is then converted to heat. Since near infrared light can penetrate deeply into tissue, gold nanorods are expected to be used as a contrast agent for bioimaging using the near infrared light and photosensitizers for photothermal therapy. The surface plasmon bands of intravenously injected the gold nanorods were directly monitored from the mouse abdomen by using a spectrophotometer equipped with an integrating sphere. The absorbance at 900 nm from PEG5,000-modified gold nanorods immediately increased after injection and reached a plateau. The injection of phosphatidylcholine-modified gold nanorods also increased the absorbance at 900 nm, but the absorbance decreased single exponentially with a 1.3-min half-life. To demonstrate photothermal tumor therapy, the PEG-modified gold nanorods were directly injected into subcutaneous tumors in mice, then, near infrared laser light was irradiated to the tumor. After the treatment, significant suppression of tumor growth was observed.

Small ◽  
2008 ◽  
Vol 4 (7) ◽  
pp. 1001-1007 ◽  
Author(s):  
Takuro Niidome ◽  
Yasuyuki Akiyama ◽  
Kohei Shimoda ◽  
Takahito Kawano ◽  
Takeshi Mori ◽  
...  

2020 ◽  
Vol 12 (1) ◽  
Author(s):  
Songtao Zhang ◽  
Longhai Jin ◽  
Jianhua Liu ◽  
Yang Liu ◽  
Tianqi Zhang ◽  
...  

AbstractIn spite of the tumor microenvironments responsive cancer therapy based on Fenton reaction (i.e., chemodynamic therapy, CDT) has been attracted more attentions in recent years, the limited Fenton reaction efficiency is the important obstacle to further application in clinic. Herein, we synthesized novel FeO/MoS2 nanocomposites modified by bovine serum albumin (FeO/MoS2-BSA) with boosted Fenton reaction efficiency by the synergistic effect of co-catalyze and photothermal effect of MoS2 nanosheets triggered by the second near-infrared (NIR II) light. In the tumor microenvironments, the MoS2 nanosheets not only can accelerate the conversion of Fe3+ ions to Fe2+ ions by Mo4+ ions on their surface to improve Fenton reaction efficiency, but also endow FeO/MoS2-BSA with good photothermal performances for photothermal-enhanced CDT and photothermal therapy (PTT). Consequently, benefiting from the synergetic-enhanced CDT/PTT, the tumors are eradicated completely in vivo. This work provides innovative synergistic strategy for constructing nanocomposites for highly efficient CDT.


2019 ◽  
Vol 173 ◽  
pp. 564-570 ◽  
Author(s):  
Ying Yang ◽  
Xue Yang ◽  
Huipeng Li ◽  
Chenzi Li ◽  
Huaqian Ding ◽  
...  

2015 ◽  
Vol 51 (13) ◽  
pp. 2569-2572 ◽  
Author(s):  
Jie Yang ◽  
Ming-Hao Yao ◽  
Ming-Shuo Du ◽  
Rui-Mei Jin ◽  
Dong-Hui Zhao ◽  
...  

A hybrid platform with polypeptide-engineered functionalized gold nanorods has been designed for reversible presentation of immobilized bioactive ligands by near-infrared light.


2011 ◽  
Vol 152 ◽  
pp. e137-e139 ◽  
Author(s):  
Daxiang Cui ◽  
Peng Huang ◽  
Chunlei Zhang ◽  
Cengiz S. Ozkan ◽  
Bifeng Pan ◽  
...  

2021 ◽  
Author(s):  
Daniel DiCenzo DiCenzo

Gold nanoparticles (GNP) have been shown to highly absorb ionizing radiation compared to tissue. GNPs have also been shown to be high absorbers of non-ionizing radiation with a peak absorbance at a wavelength dependent on their shape and size. This study investigated radiation dose enhancement in PC3 cells when in the presence of gold nanorods (NR) and near infrared light (IR). The PC3 cells were incubated with either PEGylated NRs (PNR) or anti prostate stem cell antigen antibody with nuclear localization sequence peptide conjugated NRs (AbNR). They were exposed to near infrared light at a wavelength of 810 nm to achieve a temperature of 42 ºC to 43 ºC for 60 minutes. They were also exposed to 160 kVp x-rays. It was found that both targeted and non-targeted GNPs when exposed to radiation and near infrared light synergistically enhanced radiation dose. It was also found that AbNRs provide greater dose enhancement than PNRs.


2021 ◽  
Vol 42 (08) ◽  
pp. 1155-1171
Author(s):  
Fu-chun NAN ◽  
◽  
Xiao-kuang XUE ◽  
Jie-chao GE ◽  
Peng-fei WANG ◽  
...  

Nanomaterials ◽  
2020 ◽  
Vol 10 (3) ◽  
pp. 582 ◽  
Author(s):  
Álvaro Cárcamo-Martínez ◽  
Juan Domínguez-Robles ◽  
Brónach Mallon ◽  
Md. Taifur Raman ◽  
Ana Sara Cordeiro ◽  
...  

Current strategies for the treatment of superficial non-melanoma skin cancer (NMSC) lesions include topical imoquimod, 5-fluorouracil, and photodynamic therapy. Although these treatments are effective, burning pain, blistering, and dermatitis have been reported as frequent side effects, making these therapies far from ideal. Plasmonic materials have been investigated for the induction of hyperthermia and use in cancer treatment. In this sense, the effectiveness of intratumorally and systemically injected gold nanorods (GnRs) in inducing cancer cell death upon near-infrared light irradiation has been confirmed. However, the in vivo long-term toxicity of these particles has not yet been fully documented. In the present manuscript, GnRs were included in a crosslinked polymeric film, evaluating their mechanical, swelling, and adhesion properties; moreover, their ability to heat up neonatal porcine skin (such as a skin model) upon irradiation was tested. Inclusion of GnRs into the films did not affect mechanical or swelling properties. GnRs were not released after film swelling, as they remained entrapped in the polymeric network; moreover, films did not adhere to porcine skin, altogether showing the enhanced biocompatibility of the material. GnR-loaded films were able to heat up the skin model over 40 °C, confirming the potential of this system for non-invasive local hyperthermia applications.


Sign in / Sign up

Export Citation Format

Share Document