Growth and Characterization of GaAs-Based Heterostructures on Si By Mocvd

1988 ◽  
Vol 116 ◽  
Author(s):  
W. S. Hobson ◽  
S. J. Pearton ◽  
K. T. Short ◽  
K. S. Jones ◽  
S. M. Vernon ◽  
...  

AbstractAbstract: Several different types of GaAs-AlGaAs heterostructures were grown on Si substrates by MOCVD. The defect density in as-grown samples (~108cm−2) was similar to that of GaAs layers grown directly on Si, and the crystalline quality of the material was observed to improve slightly with post-growth annealing at 900°C. We examined the diffusion of both Si and Zn dopants during this type of annealing and found only a small amount of redistribution of both species. Laser annealing of GaAs-on-Si was also examined as a method of reducing the defect density in the material - we observed substantial improvements in surface quality, but no change in sub-surface crystalline quality.

2014 ◽  
Vol 778-780 ◽  
pp. 230-233
Author(s):  
Yukimune Watanabe ◽  
Tsuyoshi Horikawa ◽  
Kiichi Kamimura

The carbonized layer for a buffer layer strongly influences the crystalline quality of the 3C-SiC epitaxial films on the Si substrates. The growth mechanism of the carbonized layer strongly depended on the process conditions. The surface of silicon substrate was carbonized under the pressure of 7.8 × 10-3 Pa or 7.8 × 10-2 Pa in this research. Under the relatively low pressure of 7.8 × 10-3 Pa, the carbonized layer was grown by the epitaxial mechanism. The crystal axis of the carbonized layer grown under this pressure was confirmed to coincide with the crystal axis of the Si substrate from the results of the selected area electron diffraction (SAED) analysis. Under the relatively high pressure condition of 7.8 × 10-2 Pa, the carbonized layer was grown by the diffusion mechanism. The result of the SAED pattern and the XTEM image indicated that this layer consisted of small grainy crystals and their crystal axes inclined against the growth direction. It was confirmed that the crystalline quality of the SiC film deposited on the carbonized layer grown by the epitaxial mechanism is better than that deposited on the layer grown by the diffusion mechanism.


1989 ◽  
Vol 148 ◽  
Author(s):  
Zuzanna Liliental-Weber ◽  
Raymond P. Mariella

ABSTRACTTransmission electron microscopy of GaAs grown on Si for metal-semiconductor-metal photodetectors is presented in this paper. Two kinds of samples are compared: GaAs grown on a 15 Å Si epilayer grown on GaAs, and GaAs grown at low temperature (300°C) on Si substrates. It is shown that the GaAs epitaxial layer grown on thin Si layer has reverse polarity to the substrate (antiphase relation). Higher defect density is observed for GaAs grown on Si substrate. This higher defect density correlates with an increased device speed, but with reduced sensitivity.


1992 ◽  
Vol 263 ◽  
Author(s):  
Ting-Yen Chiang ◽  
En-Huery Liu ◽  
Der-Hwa Yiin ◽  
Tri-Rung Yew

ABSTRACTThis paper presents results of the low—temperature epitaxial growth of GaAs on Si substrates with orientation 1°—4° off (100) by molecular beam epitaxy (MBE). The epitaxial growth ·is carried out on Si wafers subjected to HF solution treatment by “spin-etch” technique before the wafer is transferred to the entry chamber of MBE system. Methods used for reducing defect density in the epitaxial layers are proposed. The characterization techniques include cross-sectional transmission electron microscopy (XTEM), plan-view transmission electron microscopy, scanning electron microscopy (S EM), and double crystal X-ray diffraction (DCXRD). Epitaxial films with a full width at half—maximum (FWHM) of about 310 arcsec measured by DCXRD are obtained without annealing.-


1990 ◽  
Vol 198 ◽  
Author(s):  
M.M. Al-Jassim ◽  
R.K. Ahrenkiel ◽  
M.W. Wanlass ◽  
J.M. Olson ◽  
S.M. Vernon

ABSTRACTInP and GaInP layers were heteroepitaxially grown on (100) Si substrates by atmospheric pressure MOCVD. TEM and photoluminescence (PL) were used to measure the defect density and the minority carrier lifetime in these structures. The direct growth of InP on Si resulted in either polycrystalline or heavily faulted single-crystal layers. The use of GaAs buffer layers in InP/Si structures gave rise to significantly improved morphology and reduced the threading dislocation density. The best InP/Si layers in this study were obtained by using GaAs-GaInAs graded buffers. Additionally, the growth of high quality GaInP on Si was demonstrated. The minority carrier lifetime of 7 ns in these layers is the highest of any III-V/Si semiconductor measured in our laboratory.


2011 ◽  
Vol 223 ◽  
pp. 931-939
Author(s):  
Rodrigo Panosso Zeilmann ◽  
Gerson Luiz Nicola ◽  
Fernando Moreira Bordin ◽  
Tiago Vacaro ◽  
Mariana Czarnobay Zanotto

The electrical discharge machining (EDM) is a process widely used in machining of complex geometries and hardened materials, conditions that often are not met by conventional machining processes. In EDM the electrode reproduces its image or geometry on the part and this image is obtained by chip removing process, which is given by high frequency electrical discharges, causing the melting and vaporization of electrically conductive materials. Due to this mechanism of material removal, the surface is subjected to high thermal loads, which heavily influences the surface quality of obtained parts. For the characterization of these surfaces must be considered the surface topography and the metallurgical changes of the subsurface layer, since both characteristics influence the functionality of the machined parts. In addition, several variables related to the EDM process have influence on the characteristics of the generated surface. This work presents a study of the influence of EDM process on the surface quality of square cavities. It was evaluated different regions of the cavities, such as side wall, bottom and corners. The results showed significant differences between the analyzed regions.


Author(s):  
S. Intarasiri ◽  
A. Hallén ◽  
T. Kamwanna ◽  
L.D. Yu ◽  
G. Possnert ◽  
...  

2014 ◽  
Vol 474 ◽  
pp. 267-272 ◽  
Author(s):  
Michal Fabian ◽  
Peter Ižol ◽  
Dagmar Draganovská ◽  
Miroslav Tomáš

The paper deals with the effects of CAM data needed to produce desired quality of shaped surfaces in forming dies making. In general, the input CAM data have strong influence to the final surface quality. The shaped surfaces 3D milling has been modeled as end ball milling of the surfaces with defined inclination. The end ball milling is the most common way to finish shaped surfaces. Directions of the milling tools motion and applied cutting conditions have been used to simulate data when setting milling strategies. The resultant machined surface quality has been identified in terms of the surface roughness. The paper introduces recommendations applicable to the programming of the different types of milling strategy when producing form surfaces.


Sign in / Sign up

Export Citation Format

Share Document