Surface Quality of Cavities Obtained by EDM Process

2011 ◽  
Vol 223 ◽  
pp. 931-939
Author(s):  
Rodrigo Panosso Zeilmann ◽  
Gerson Luiz Nicola ◽  
Fernando Moreira Bordin ◽  
Tiago Vacaro ◽  
Mariana Czarnobay Zanotto

The electrical discharge machining (EDM) is a process widely used in machining of complex geometries and hardened materials, conditions that often are not met by conventional machining processes. In EDM the electrode reproduces its image or geometry on the part and this image is obtained by chip removing process, which is given by high frequency electrical discharges, causing the melting and vaporization of electrically conductive materials. Due to this mechanism of material removal, the surface is subjected to high thermal loads, which heavily influences the surface quality of obtained parts. For the characterization of these surfaces must be considered the surface topography and the metallurgical changes of the subsurface layer, since both characteristics influence the functionality of the machined parts. In addition, several variables related to the EDM process have influence on the characteristics of the generated surface. This work presents a study of the influence of EDM process on the surface quality of square cavities. It was evaluated different regions of the cavities, such as side wall, bottom and corners. The results showed significant differences between the analyzed regions.

Metals ◽  
2020 ◽  
Vol 10 (7) ◽  
pp. 949 ◽  
Author(s):  
Katerina Mouralova ◽  
Radim Zahradnicek ◽  
Libor Benes ◽  
Tomas Prokes ◽  
Radim Hrdy ◽  
...  

Wire electrical discharge machining is an unconventional machining technology that is crucial in many industries. The surface quality of the machined parts is carefully monitored, but the condition of the subsurface layer also plays a crucial role, especially in case of defects occurrence such as cracks or burnt cavities. The subsurface layer of individual materials is affected differently due to wire electrical discharge machining. For this reason, this study was carried out focusing on a detailed analysis of transmission electron microscope (TEM) lamella made of Ti-6Al-4V titanium alloy, AlZn6Mg2Cu aluminum alloy, pure molybdenum, Creusabro 4800 steel, and Hardox 400 steel. The attention was first of all paid to the concentration and distribution of individual elements in the recast layer and also in the base material, which was often affected by wire electrical discharge machining. Further, a diffraction analysis was performed for each TEM lamella in the adhesive area and in the base material area. In order to assess the macro-effects on the machined material, the topography analysis of the machined surfaces and the morphology analysis were performed using electron microscopy.


2021 ◽  
Vol 8 (5) ◽  
pp. 91-95
Author(s):  
Nayan J. Patel

Electrical Discharge Machining is one of the non-conventional machining processes used for electrically conductive material. It is widely used for manufacturing complicated parts which are tough to be produced by conventional manufacturing processes. It is based on thermoelectric energy between workpiece and electrode. Metal is removed by melting and vaporizing because of spark occurs in the gap between electrode and workpiece. Workpiece and electrode must have electrically conductive to generate a spark. The performance of the EDM process is largely depends on the electrode. Electrode is considered as tool in EDM process. Selection of the electrode material plays vital role in the EDM process. Different electrode materials have different properties. Hence, the performance of the EDM process changes with different materials. Researchers have used different materials as electrode to investigate the effects of materials and to improve the performance of EDM process. This paper reviews the research work carried out in the field of materials and manufacturing methods for electrodes in EDM process. Keywords: [EDM, Electrodes, Materials, Manufacturing Process].


2000 ◽  
Vol 2000.53 (0) ◽  
pp. 49-50
Author(s):  
Rikio HIKIJI ◽  
Yoshihiro KAWANO ◽  
Koji ABURADA ◽  
Masakazu HARADA ◽  
Minoru ARAI

2021 ◽  
Author(s):  
Aboulfazl Taherkhania ◽  
Mohsen Asghari Ilani ◽  
Faramarz Ebrahimi ◽  
Phan Huu Nguyen ◽  
Long Banh Tien ◽  
...  

Abstract It is very essential to form such high stregth and hard-to-cut materials by using modern machining methods. It is important to introduce the efforts on modification of the process for improving the machining quality. In the present investigation, an effort was made to analyze the effects of micro size aluminium particles mixed dielectric medium under different powder concentration on machining titanium alloy in electro erosion process. The response-surface-methodology(RSM) based algorithm was utilized to analyze the performance measures by considering machinning time with Cost of Goods Manufactured (COGM) method in PMEDM process. It was found that the micron size powders can significantly help to enhance the surface quality of the Ti-6Al-4V surface during machining in EDM process. The presence of carbon, oxygen elements and the formation of surface oxides and carbides has been found due to the decomposition of dielectric fluid in PMEDM process. The lower deep cavities and uniform machining surface have been produced with the aluminum oxide powder EDM process owing to lower surface cracks density, conductivity. To sum up, investigation and comparison of surface scanning showed that this setting has been implied could be considered by the industries needs more precision.


NANO ◽  
2011 ◽  
Vol 06 (06) ◽  
pp. 561-568 ◽  
Author(s):  
G. TAHMASEBIPOUR ◽  
Y. TAHMASEBIPOUR ◽  
M. GHOREISHI

Electrical discharge machining (EDM) process is one of the advanced machining processes that can machine the various complex shapes from all conductor and semiconductor materials. Wide and diverse applications of Micro-EDM process in microfabrication and micro- to nano-miniaturization tendency is promising application of Nano-EDM process in nanofabrication. The Nano-EDM is a precise, sensitive and costly process. Therefore, simulation of nanocrater produced by each spark in this process prevents spending extra time and cost to perform Nano-EDM process through trial and error method. In this paper nanocrater machined by the Nano-EDM process on a gold nanofilm is simulated under practically experimental conditions. Radius, depth and volume of the nanocrater are evaluated versus process conditions (average power and pulse duration) and workpiece thickness (50 nm, 100 nm and 300 nm). It is observed that radius of the nanocrater is increased exponentially with increasing spark pulse duration. Also, depth, volume of the removed material from the workpiece surface and material removal rate (MRR) are increased with increasing consumed energy by each spark. By increasing thickness of the nanofilm, volume of the removed material and dimensions of the nanocrater are decreased.


2018 ◽  
Vol 5 (9) ◽  
pp. 18730-18738 ◽  
Author(s):  
Manikandan Hareendran ◽  
S. Sreejith

1991 ◽  
Vol 113 (4) ◽  
pp. 437-442 ◽  
Author(s):  
M. Ramulu ◽  
J. L. Garbini

Electrical Discharge Machined (EDM) hole surface characteristics of 20 percent Titanium diboride (TiB2) particulate and Silicon carbide (SiC) matrix composite material were investigated. The EDM hole surfaces produced by using brass, copper and graphite were examined by scanning electron microscopy (SEM) and surface profilometry to determine the surface characteristics. As-machined surfaces showed the microcracks in the recast layer, and the individual TiB2 grains were exposed on the surface. The depth of the recast structure on the surface has varied from 8 μm to less than a micrometer and was approximately proportional to the amount of impinging energy or power input. The EDM process appears to be a promising method of producing an excellent surface in electrically conductive TiB2/SiC composite under slow cutting conditions.


2011 ◽  
Vol 264-265 ◽  
pp. 956-961 ◽  
Author(s):  
Md. Ashikur Rahman Khan ◽  
M.M. Rahman ◽  
M.M. Noor ◽  
K. Kadirgama ◽  
M.A. Maleque

Electrical discharge machining (EDM) technique has been widely used in modern metal working industry for producing complex cavities in dies and moulds, which are otherwise difficult to create by conventional machining. The process has the advantage of being able to machine hardened tool steels. However, its low machining efficiency and poor surface finish restricted its further applications. To address these problems, one relatively new technique used to improve the efficiency and surface finish is EDM in the presence of powder suspended in the dielectric fluid. Powder mixed electric discharge machining (PMEDM) is one of the recent innovations for the enhancement of capabilities of EDM process. In PMEDM, the electrically conductive powder is mixed in the dielectric fluid of EDM, which reduces the insulating strength of the dielectric fluid and increases the spark gap between the tool and workpiece. As a result, the process becomes more stable, thereby, improving the material removal rate (MRR) and surface finish. Moreover, the surface develops high resistance to corrosion and abrasion. This paper presents the current research trends on dry, near dry EDM and review on research carried out in the area of PMEDM.


2020 ◽  
Vol 27 (12) ◽  
pp. 2030002 ◽  
Author(s):  
AMOLJIT SINGH GILL ◽  
SANJEEV KUMAR ◽  
JUJHAR SINGH ◽  
VIVEK AGGARWAL ◽  
SHUBHAM SHARMA

Electrical discharge machining (EDM) is one of the most explored nonconventional machining processes due to its ability to machine intricate shapes on conductive materials. However, tool wear is one of the major challenges in the EDM process as it directly affects the accuracy of machining, surface roughness, reproduction of geometrical characteristics on the workpiece and cost of the process. Lots of work have been done to minimize the tool wear by improving the discharge conditions by controlling the EDM process parameters, varying the dielectric characteristics, powder-mixed dielectric methods and ultrasonic-assisted methods. However, minimizing the tool wear by the above approaches also constrains the material removal rate from the workpiece and accuracy of the process. This review highlights the efforts done by the researchers to improve tool wear by recently developed techniques or modifications. Researches available in the field of using treated tool electrode, cooled tool electrode, coated tool electrode, noble tool materials and other techniques are highlighted.


Sign in / Sign up

Export Citation Format

Share Document