Phosphorescent White OLEDs for Solid-state Lighting

2009 ◽  
Vol 1212 ◽  
Author(s):  
Sean Xia ◽  
Peter Levermore ◽  
Vadim Adamovich ◽  
Chun Lin ◽  
Raymond C. Kwong ◽  
...  

AbstractWhite OLEDs (WOLEDTMs) fabricated using energy efficient phosphorescent OLED (PHOLEDTM) technology open up exciting new ways to develop efficient white lighting. WOLEDs have the potential to transform the lighting industry. In this presentation, phosphorescent WOLEDs with high conductivity transport layers will be discussed. White light can be generated by partial energy transfer from blue to green and red. Single WOLED stacks are demonstrated that match the Energy Star® lighting color criteria for 2700K and 3000K with high efficiency (˜80 lm/W) and high color rendering indices (˜80). Both devices had operational lifetimes (LT70%) over 30,000 hours measured from an initial luminance of 1,000 cd/m2. Different techniques to improve optical outcoupling will also be discussed.

2010 ◽  
Vol 41 (1) ◽  
pp. 778 ◽  
Author(s):  
Tukaram K. Hatwar ◽  
Jeffrey P. Spindler ◽  
Marina Kondakova ◽  
David Giesen ◽  
Joseph Deaton ◽  
...  

2011 ◽  
Vol 19 (11) ◽  
pp. 838 ◽  
Author(s):  
Takuya Komoda ◽  
Nobuhiro Ide ◽  
Kittichungchit Varutt ◽  
Kazuyuki Yamae ◽  
Hiroya Tsuji ◽  
...  

2014 ◽  
Vol 357 ◽  
pp. 1-27 ◽  
Author(s):  
N. Thejokalyani ◽  
S.J. Dhoble

The importance of artificial light has long been recognized as it extends the day. Copious corporations and academic institutions are investing cosmic treasures in tracking down the advanced artificial lighting applications with a vision towards energy efficient and eco-friendly solid state lighting. In this regard, organic light-emitting diodes (OLEDs) are going to change the human lifestyle, by offering a promising avenue to develop future energy saving solid-state lighting sources because of their intrinsic characteristics such as low driving voltage, high resolution, high brightness, large viewing angle, large color gamut, high contrast, less weight and size, efficiency etc., there by dictating their ability to reach the pinnacle in the field of flat panel displays and solid state lighting sources. With the goal towards future application, many design strategies like synthesis of novel materials, well judged anatomy of device configuration, development of refined and low cost fabrication techniques have been put forward to achieve high efficiency, good color stability and quality lighting. Practical applications, which enrich the ideas of the specialists in this field to develop new routes for future research development of OLEDs are enumerated and illustrated by specific examples. This chapter also integrates the novel approaches for energy efficient and eco-friendly solid state lighting as well as the limitations and global haphazards of currently used lighting systems. The current state of the art, ongoing challenges and future perspectives of this research frontier to reduce the driving voltage, minimization of degradation issues, enhance their life time are illustrated. Review on the status and future outlook of these OLEDs strongly reveals their emergence in the next few years.


Electronics ◽  
2020 ◽  
Vol 10 (1) ◽  
pp. 60
Author(s):  
Mario Ponce-Silva ◽  
Daniel Salazar-Pérez ◽  
Oscar Miguel Rodríguez-Benítez ◽  
Luis Gerardo Vela-Valdés ◽  
Abraham Claudio-Sánchez ◽  
...  

The main contribution of this paper is to show a new AC/DC converter based on the rearrangement of the flyback converter. The proposed circuit only manages part of the energy and the rest is delivered directly from the source to the load. Therefore, with the new topology, the efficiency is increased, and the stress of the components is reduced. The rearrangement consist of the secondary of the flyback is placed in parallel with the load, and this arrangement is connected in series with the primary side and the rectified voltage source. The re-arranged flyback is only a reductive topology and with no magnetic isolation. It was studied as a power supply for LEDs. A low frequency averaged analysis (LFAA) was used to determine the behavior of the proposed circuit and an equivalent circuit much easier to analyze was obtained. To validate the theoretical analysis, a design methodology was developed for the re-arranged flyback converter. The designed circuit was implemented in a 10 W prototype. Experimental results showed that the converter has a THDi = 21.7% and a PF = 0.9686.


2014 ◽  
Vol 700 ◽  
pp. 113-116
Author(s):  
Yu Jie Chen ◽  
Feng Lan Han ◽  
Zhao Luo

Na2BaMgP2O8phosphors were synthesized by a standard solid state reaction and their luminescent properties were investigated. The phase structure was analyzed by X-ray powder diffraction measurement. Under the excitation of 365nm, Na2BaMgP2O8:Tb3+, Eu3+phosphors show two color bands of green and red color due to5D4−7F5transition of Tb3+ions and5D0−7F2transition of Eu3+ions, respectively. The emission intensity of Tb3+deceased with the increasing concentration of Eu3+, which verified that an effective energy transfer occurred from Tb3+to Eu3+in Na2BaMgP2O8host. The present study indicated that the phosphors have a high potential application in solid state lighting.


Author(s):  
S. Saito ◽  
Y. Hattori ◽  
M. Sugai ◽  
Y. Harada ◽  
H. Jongil ◽  
...  

Author(s):  
Mariano Perálvarez ◽  
Jorge Higuera ◽  
Wim Hertog ◽  
Óscar Motto ◽  
Josep Carreras

Sign in / Sign up

Export Citation Format

Share Document