The effect of molybdenum trioxide inter-layer between indium tin oxide (ITO) and organic semiconductor on the energy level alignment
AbstractWe investigated 0 to 300 Å thick stepped molybdenum trioxide (MoO3) inter-layer between in-situ oxygen plasma treated conducting indium tin oxide (ITO) and chloro-aluminum pthalocyanine (AlPc-Cl) layer-by-layer evaporated up to 228 Å, with ultra-violet photoemission spectroscopy (UPS) and inverse photoemission spectroscopy (IPES). The MoO3 inter-layers were observed to increase the surface workfunction. The workfunction increase was observed to saturate at 20 Å of MoO3 coverage. The increased surface workfunction causes hole accumulation and band bending in the subsequently deposited AlPc-Cl. A possible explanation of reduction in series resistance by the insertion of the MoO3 insulating layer is discussed based on these observations and energy level alignment.