scholarly journals Multiscale Computer Simulation of Tensile and Compressive Strain in Polymer-Coated Silica Aerogels

2009 ◽  
Vol 1224 ◽  
Author(s):  
Brian Good

AbstractWhile the low thermal conductivities of silica aerogels have made them of interest to the aerospace community as lightweight thermal insulation, the application of conformal polymer coatings to these gels increases their strength significantly, making them potentially useful as structural materials as well. In this work we perform multiscale computer simulations to investigate the tensile and compressive strain behavior of silica and polymer-coated silica aerogels. Aerogels are made up of clusters of interconnected particles of amorphous silica of less than bulk density. We simulate gel nanostructure using a Diffusion Limited Cluster Aggregation (DLCA) procedure, which produces aggregates that exhibit fractal dimensions similar to those observed in real aerogels. We have previously found that model gels obtained via DLCA exhibited stress-strain curves characteristic of the experimentally observed brittle failure. However, the strain energetics near the expected point of failure were not consistent with such failure. This shortcoming may be due to the fact that the DLCA process produces model gels that are lacking in closed-loop substructures, compared with real gels. Our model gels therefore contain an excess of dangling strands, which tend to unravel under tensile strain, producing non-brittle failure. To address this problem, we have incorporated a modification to the DLCA algorithm that specifically produces closed loops in the model gels. We obtain the strain energetics of interparticle connections via atomistic molecular statics, and abstract the collective energy of the atomic bonds into a Morse potential scaled to describe gel particle interactions. Polymer coatings are similarly described. We apply repeated small uniaxial strains to DLCA clusters, and allow relaxation of the center eighty percent of the cluster between strains. The simulations produce energetics and stress-strain curves for looped and nonlooped clusters, for a variety of densities and interaction parameters.

2008 ◽  
Vol 1130 ◽  
Author(s):  
Brian Good

AbstractThe low thermal conductivities of silica aerogels have made them of interest to the aerospace community for applications such as cryotank insulation. Recent advances in the application of conformal polymer coatings to these gels have made them significantly stronger, and potentially useful as lightweight materials for impact absorption as well. In this work, we perform multiscale computer simulations to investigate the tensile strength and failure behavior of silica and polymer-coated silica aerogels. The gels' nanostructure is simulated via a Diffusion Limited Cluster Aggregation (DLCA) procedure. The procedure produces fractal aggregates that exhibit fractal dimensions similar to those observed in real aerogels. The largest distinct feature of the clusters is the so-called secondary particle, typically tens of nm in diameter, which is composed of primary particles of amorphous silica an order of magnitude smaller. The secondary particles are connected by amorphous silica bridges that are typically smaller in diameter than the particles they connect. We investigate tensile failure via the application of a uniaxial tensile strain to the DLCA clusters. In computing the energetics of tensile strain, the detailed structure of the secondary particles is ignored, and the interaction among secondary particles is described by Morse pair potentials, representing the strain energetics of the silica gel and the polymer coating, parameterized such that the potential ranges are much smaller than the secondary particle size. The Morse parameters are obtained by separate atomistic simulation of models of the interparticle bridges and polymer coatings, with the tensile behavior of these bridges modeled via molecular statics. We consider the energetics of tensile strain and tensile failure, and compare qualitative features of low-and high-density gel failure.


1994 ◽  
Vol 367 ◽  
Author(s):  
ST.C. Pencea ◽  
M. Dumitrascu

AbstractDiffusion-limited cluster aggregation has been simulated on a square two dimensional lattice. In order to simulate the brownian motion, we used both the algorithm proposed initially by Kolb et all. and a new algorithm intermediary between a simple random walk and the ballistic model.The simulation was performed for many values of the concentration, from 1 to 50%. By using a box-counting algorithm one has calculated the fractal dimensions of the obtained clusters. Its increasing vs. concentration has been pointed out. The results were compared with those of the classical diffusion-limited aggregation (DLA).


2012 ◽  
Vol 1 (3) ◽  
pp. 32-38
Author(s):  
Tantary M.A ◽  
◽  
Upadhyay A ◽  
Prasad J ◽  
◽  
...  

1985 ◽  
Vol 58 (4) ◽  
pp. 830-856 ◽  
Author(s):  
R. J. Cembrola ◽  
T. J. Dudek

Abstract Recent developments in nonlinear finite element methods (FEM) and mechanics of composite materials have made it possible to handle complex tire mechanics problems involving large deformations and moderate strains. The development of an accurate material model for cord/rubber composites is a necessary requirement for the application of these powerful finite element programs to practical problems but involves numerous complexities. Difficulties associated with the application of classical lamination theory to cord/rubber composites were reviewed. The complexity of the material characterization of cord/rubber composites by experimental means was also discussed. This complexity arises from the highly anisotropic properties of twisted cords and the nonlinear stress—strain behavior of the laminates. Micromechanics theories, which have been successfully applied to hard composites (i.e., graphite—epoxy) have been shown to be inadequate in predicting some of the properties of the calendered fabric ply material from the properties of the cord and rubber. Finite element models which include an interply rubber layer to account for the interlaminar shear have been shown to give a better representation of cord/rubber laminate behavior in tension and bending. The application of finite element analysis to more refined models of complex structures like tires, however, requires the development of a more realistic material model which would account for the nonlinear stress—strain properties of cord/rubber composites.


2014 ◽  
Vol 46 ◽  
pp. 65-72 ◽  
Author(s):  
Jodilson Amorim Carneiro ◽  
Paulo Roberto Lopes Lima ◽  
Mônica Batista Leite ◽  
Romildo Dias Toledo Filho

1978 ◽  
Vol 12 (3) ◽  
pp. 265-269 ◽  
Author(s):  
S. Miura ◽  
F. Hori ◽  
N. Nakanishi

Sign in / Sign up

Export Citation Format

Share Document