Applications of ultramicrotomy for materials characterization

Author(s):  
R.T. Blackham ◽  
J.J. Haugh ◽  
C.W. Hughes ◽  
M.G. Burke

Essential to the characterization of materials using analytical electron microscopy (AEM) techniques is the specimen itself. Without suitable samples, detailed microstructural analysis is not possible. Ultramicrotomy, or diamond knife sectioning, is a well-known mechanical specimen preparation technique which has been gaining attention in the materials science area. Malis and co-workers and Glanvill have demonstrated the usefulness and applicability of this technique to the study of a wide variety of materials including Al alloys, composites, and semiconductors. Ultramicrotomed specimens have uniform thickness with relatively large electron-transparent areas which are suitable for AEM anaysis.Interface Analysis in Type 316 Austenitic Stainless Steel: STEM-EDS microanalysis of grain boundaries in austenitic stainless steels provides important information concerning the development of Cr-depleted zones which accompany M23C6 precipitation, and documentation of radiation induced segregation (RIS). Conventional methods of TEM sample preparation are suitable for the evaluation of thermally induced segregation, but neutron irradiated samples present a variety of problems in both the preparation and in the AEM analysis, in addition to the handling hazard.

Author(s):  
S.R. Glanvill

This paper summarizes the application of ultramicrotomy as a specimen preparation technique for some of the Materials Science applications encountered over the past two years. Specimens 20 nm thick by hundreds of μm lateral dimension are readily prepared for electron beam analysis. Materials examined include metals, plastics, ceramics, superconductors, glassy carbons and semiconductors. We have obtain chemical and structural information from these materials using HRTEM, CBED, EDX and EELS analysis. This technique has enabled cross-sectional analysis of surfaces and interfaces of engineering materials and solid state electronic devices, as well as interdiffusion studies across adjacent layers.Samples are embedded in flat embedding moulds with Epon 812 epoxy resin / Methyl Nadic Anhydride mixture, using DY064 accelerator to promote the reaction. The embedded material is vacuum processed to remove trapped air bubbles, thereby improving the strength and sectioning qualities of the cured block. The resin mixture is cured at 60 °C for a period of 80 hr and left to equilibrate at room temperature.


2002 ◽  
Vol 8 (I1) ◽  
pp. 20-20

Topic: Characterization of Non-Conductive or Charging Materials by Microbeam AnalysisThe goal of this topical conference is to present the state of the art for materials characterization of non-conductive or charging materials using microbeam analysis. Examples of charging materials include polymeric materials, ceramic materials, and photoresist materials in the microelectronic industry. Also, the characterization of biological specimens will be covered because they are prone to problems related to charging. These materials are of great technological importance and their characterization is still a great challenge because they charge when analyzed with an electron beam. The techniques of microbeam analysis that will be considered are: X-ray Microanalysis in the Electron Microprobe, Low Voltage Scanning Electron Microscopy, Environmental Scanning Electron Microscopy, Analytical Electron Microscopy with Field Emission Transmission Electron Microscopy, and Focused Ion Beam Milling for specimen preparation. World experts will present papers on these topics. Papers from this topical conference will be published in a special issue of Microscopy & Microanalysis.


MRS Advances ◽  
2017 ◽  
Vol 2 (63) ◽  
pp. 3933-3938 ◽  
Author(s):  
Yvonne Kavanagh ◽  
Damien Raftery

ABSTRACTPhysics forms a core subject on any Materials Science and Engineering programme. In order to engage first year undergraduate students in the formal education environment, motivating the students is fundamental to ensuring their success. This qualitative study focuses on the use of technology to assess a student’s comprehension of fundamental light phenomena. A knowledge of light phenomena is essential in Materials Science, for the characterization of materials, where electromagnetic (EM) radiation is used as an analytical tool. Using visible light, students can easily see what is happening and when they have to capture digital evidence of the phenomena they focus on the event.Physical Physics a structured guided approach which initially leads the students through the theory and problem solving. It provides the knowledge scaffold the students require to allow them to use their individual creativity to express their understanding. In this case, understanding is captured and assessed by the production of a portfolio of original photographs of Light phenomena taken by the student.In addition to a traditional lecture exposition, Physical Physics takes an active learning approach with authentic assessment designed for deep learning. Students learn about relevant light phenomena in the familiar landscape of their world. The assessment provides opportunities for choice, creativity and reflection. It fosters students’ interest to encourage intrinsic motivation and engagement.This approach has been successfully piloted with first year undergraduate students. Samples of the students’ work is shown. The students interviewed reveal how this approach enhanced their understanding of these Light concepts and changed their perceptions of studying Physics in general.


2019 ◽  
Vol 11 (1) ◽  
Author(s):  
Papri Chakraborty ◽  
Thalappil Pradeep

Abstract Mass spectrometry (MS), a hundred-year-old subject, has been a technique of profound importance to molecular science. Its impact in solid-state materials science has not been evident, although many materials of modern science, such as fullerenes, have their origins in MS. Of late, mass spectrometric interface with materials is increasingly strengthened with advances in atomically precise clusters of noble metals. Advances in instrumentation along with recent developments in synthetic approaches have expanded the chemistry of clusters, and new insights into matter at the nanoscale are emerging. High-resolution MS coupled with soft ionization techniques enable efficient characterization of atomically precise clusters. Apart from that, techniques such as ion mobility, tandem MS, etc. reveal structural details of these systems. Growth, nucleation, and reactivity of clusters are also probed by MS. Some of the recent advancements in this field include the development of new hyphenated techniques. Finer structural details may be obtained by coupling MS with spectroscopic tools, such as photoelectron spectroscopy, vacuum ultraviolet spectroscopy, etc. With such advancements in instrumentation, MS can evolve into a universal tool for the characterization of materials. The present review captures highlights of this area.


1998 ◽  
Vol 540 ◽  
Author(s):  
E. A. Kenik ◽  
J. T. Busby ◽  
M. K. Miller ◽  
A. M. Thuvander ◽  
G. Was

AbstractThe pre-existing segregation at grain boundaries in two austenitic stainless steels has been investigated by atom probe field ion microscopy and analytical electron microscopy. In addition, the effect of radiation-induced segregation on the near-grain-boundary composition has been studied by analytical electron microscopy. Pre-existing enrichment of Cr, Mo, B, C and P and depletion of Fe and Ni near grain boundaries has been observed. Significant affinity between Mo and N in both alloys is indicated by the detection of MoN2+` molecular ions during field evaporation. The pre-existing segregation is modified by radiation-induced segregation resulting in Ni and Si enrichment near the boundary as well as depletion of chromium adjacent to the boundary resulting in a “W-shaped” Cr profile.


MRS Bulletin ◽  
1997 ◽  
Vol 22 (8) ◽  
pp. 17-21 ◽  
Author(s):  
Edward T. Yu ◽  
Stephen J. Pennycook

One of the dominant trends in current research in materials science and related fields is the fabrication, characterization, and application of materials and device structures whose characteristic feature sizes are at or near the nanometer scale. Achieving an understanding of—and ultimately control over—the properties and behavior of a wide range of materials at the nanometer scale has therefore become a major theme in materials research. As our ability to synthesize materials and fabricate structures in this size regime improves, effective characterization of materials at the nanometer scale will continue to increase in importance.Central to this activity are the development and application of effective experimental techniques for performing characterization of structural, electronic, magnetic, optical, and other properties of materials with nanometer-scale spatial resolution. Two classes of experimental methods have proven to be particularly effective: scanning-probe techniques and electron microscopy. In this issue of MRS Bulletin, we have included eight articles that illustrate the elucidation of various aspects of nanometer-scale material properties using advanced scanningprobe or electron-microscopy techniques. Because the range of both experimental techniques and applications is extremely broad—and rapidly increasing—our intent is to provide several examples rather than a comprehensive treatment of this extremely active and rapidly growing field of research.


Sign in / Sign up

Export Citation Format

Share Document