Deep Level Transient Spectroscopy of Defects Induced by the Combination of CF4 Reactive Ion Etching and Oxidation in Metal-Oxide-Silicon Capacitors.

1989 ◽  
Vol 148 ◽  
Author(s):  
Dominique Vuillaume ◽  
Jeff P. Gambino

ABSTRACTMetal-Oxide-silicon (MOS) capacitors have been fabricated on CFb reactive ion etched silicon (n and p types) in order to study the defects at the Si-Si02 interface and in the bulk of the substrate, produced by the combination of reactive ion etching (RIE) and oxidation. Bulk defects and fast interface states are analysed by Deep Level Transient Spectroscopy (DLTS) and the slow interface states in the oxide layer near the interface are probed by Tunnel-DLTS. A density of fast interface states in the range 1010-1011 cm−2 eV−1 is observed for capacitors (both n and p types) fabricated with either dry or wet oxidations, and is probably due to disrupted or strained bonds at the Si-SiO2 interface. The observation of bulk defects in the wet-RIE oxide samples but not in the dry-RIE oxide samples may be related to the shorter oxidation time for wet oxides (31mn) compared to dry oxides(190mn) and explained by a greater annealing of RIE induced defects during the dry oxidation. The bulk traps are identified to be related to carbon contamination, in SiC form, introduced during RIE. Finally, an increase of the slow interface states density is observed for the n-type dry oxide samples.

2010 ◽  
Vol 645-648 ◽  
pp. 759-762
Author(s):  
Koutarou Kawahara ◽  
Giovanni Alfieri ◽  
Michael Krieger ◽  
Tsunenobu Kimoto

In this study, deep levels are investigated, which are introduced by reactive ion etching (RIE) of n-type/p-type 4H-SiC. The capacitance of as-etched p-type SiC is remarkably small due to compensation or deactivation of acceptors. These acceptors can be recovered to the initial concentration of the as-grown sample after annealing at 1000oC. However, various kinds of defects remain at a total density of ~5× 1014 cm-3 in a surface-near region from 0.3 μm to 1.0 μm even after annealing at 1000oC. The following defects are detected by Deep Level Transient Spectroscopy (DLTS): IN2 (EC – 0.35 eV), EN (EC – 1.6 eV), IP1 (EV + 0.35 eV), IP2 (HS1: EV + 0.39 eV), IP4 (HK0: EV + 0.72 eV), IP5 (EV + 0.75 eV), IP7 (EV + 1.3 eV), and EP (EV + 1.4 eV). These defects generated by RIE can be significantly reduced by thermal oxidation and subsequent annealing at 1400oC.


2014 ◽  
Vol 896 ◽  
pp. 241-244
Author(s):  
Kusumandari ◽  
Noriyuki Taoka ◽  
Wakana Takeuchi ◽  
Mitsuo Sakashita ◽  
Osamu Nakatsuka ◽  
...  

We investigated impacts of the Ar and CF4 plasma during reactive ion etching (RIE) on defect formation in the Ge substrates using the deep-level-transient-spectroscopy (DLTS) technique. It was found that the Ar plasma causes the roughening of the Ge surface. Moreover, the Ar plasma induces a defect with an energy level of 0.31 eV from the conduction band minimum in the Ge substrate, confirming by DLTS spectra. On the other hand, the CF4plasma hardly induces the surface roughness of Ge. However, the CF4plasma induces many kinds of electron and hole traps. It should be noted that the defects associated with Sb and interstitials are widely distributed to around 3-µm.


1982 ◽  
Vol 14 ◽  
Author(s):  
P. H. Campbell ◽  
O. Aina ◽  
B. J. Baliga ◽  
R. Ehle

ABSTRACTHigh temperature annealing of Si 3 N4 and SiO2 capped high purity LPE GaAs is shown to result in a reduction in the surface carrier concentration by about an order of magnitude. Au Schottky contacts made on the annealed samples were found to have severely degraded breakdown characteristics. Using deep level transient spectroscopy, deep levels at EC–.58eV, EC–.785eV were detected in the SiO2, capped samples and EC–.62eV, EC–.728eV in the Si3N4 capped Samples while none was detected in the unannealed samples.The electrical degradations are explained in terms of compensation mechanisns and depletion layer recombination-generation currents due to the deep levels.


2010 ◽  
Vol 96 (10) ◽  
pp. 103507 ◽  
Author(s):  
Chun Gong ◽  
Eddy Simoen ◽  
Niels Posthuma ◽  
Emmanuel Van Kerschaver ◽  
Jef Poortmans ◽  
...  

1993 ◽  
Vol 316 ◽  
Author(s):  
J. Ravi ◽  
Yu. Erokhin ◽  
S. Koveshnikov ◽  
G.A. Rozgonyi ◽  
C.W. White

ABSTRACTThe influence of in-situ electronic perturbations on defect generation during 150 keV proton implantation into biased silicon p-n junctions has been investigated. The concentration and spatial distribution of the deep traps were characterized using a modification of the double corelation deep level transient spectroscopy technique (D-DLTS). With the in-situ electric field applied, a decrease in concentration of vacancy-related, as well as H-related, traps was observed. 500 keV He+ implantation was also performed to supplement the above studies and to differentiate any passivation effects due to hydrogen. A model based on the charge states of hydrogen and vacancies was used to explain the observed behaviour.


2019 ◽  
Vol 41 (4) ◽  
pp. 37-44 ◽  
Author(s):  
Eddy Simoen ◽  
Aude Rothschild ◽  
Bart Vermang ◽  
Jef Poortmans ◽  
Robert Mertens

Sign in / Sign up

Export Citation Format

Share Document