The Influence of an In-Situ Electric Field on H+ and He+ Implantation Induced Defects in Silicon

1993 ◽  
Vol 316 ◽  
Author(s):  
J. Ravi ◽  
Yu. Erokhin ◽  
S. Koveshnikov ◽  
G.A. Rozgonyi ◽  
C.W. White

ABSTRACTThe influence of in-situ electronic perturbations on defect generation during 150 keV proton implantation into biased silicon p-n junctions has been investigated. The concentration and spatial distribution of the deep traps were characterized using a modification of the double corelation deep level transient spectroscopy technique (D-DLTS). With the in-situ electric field applied, a decrease in concentration of vacancy-related, as well as H-related, traps was observed. 500 keV He+ implantation was also performed to supplement the above studies and to differentiate any passivation effects due to hydrogen. A model based on the charge states of hydrogen and vacancies was used to explain the observed behaviour.

Author(s):  
М.М. Соболев ◽  
Ф.Ю. Солдатенков

The results of experimental studies of capacitance– voltage characteristics, spectra of deep-level transient spectroscopy of graded high-voltage GaAs p+−p0−i−n0 diodes fabricated by liquid-phase epitaxy at a crystallization temperature of 900C from one solution–melt due to autodoping with background impurities, in a hydrogen or argon ambient, before and after irradiation with neutrons. After neutron irradiation, deep-level transient spectroscopy spectra revealed wide zones of defect clusters with acceptor-like negatively charged traps in the n0-layer, which arise as a result of electron emission from states located above the middle of the band gap. It was found that the differences in capacitance–voltage characteristics of the structures grown in hydrogen or argon ambient after irradiation are due to different doses of irradiation of GaAs p+−p0−i−n0 structures and different degrees of compensation of shallow donor impurities by deep traps in the layers.


2020 ◽  
Vol 67 (9) ◽  
pp. 2051-2061
Author(s):  
George T. Nelson ◽  
Gildas Ouin ◽  
Stephen J. Polly ◽  
Kevin B. Wynne ◽  
Arthur W. Haberl ◽  
...  

2012 ◽  
Vol 717-720 ◽  
pp. 251-254 ◽  
Author(s):  
Bernd Zippelius ◽  
Alexander Glas ◽  
Heiko B. Weber ◽  
Gerhard Pensl ◽  
Tsunenobu Kimoto ◽  
...  

Deep Level Transient Spectroscopy (DLTS) and Double-correlated DLTS (DDLTS) measurements have been conducted on Schottky contacts fabricated on n-type 4H-SiC epilayers using different contact metals in order to separate the EH6- and EH7-centers, which usually appear as a broad double peak in DLTS spectra. The activation energy of EH6(EC- ET(EH6) = 1.203 eV) turns out to be independent of the electric field. As a consequence, EH6is acceptor-like according to the missing Poole-Frenkel effect. Therefore, it can be excluded that the EH6-center and the prominent acceptor-like Z1/2-center belong to different charge states of the same microscopic defect as theoretically suggested. It is proposed that EH6is a complex containing a carbon vacancy and another component available at high concentrations. The activation energy of EH7(EC- ET(EH7) = 1.58 eV) has been evaluated indirectly by fitting the DLTS spectra of the EH6/7double peak taking the previously determined parameters of EH6into account.


1991 ◽  
Vol 69 (3-4) ◽  
pp. 407-411 ◽  
Author(s):  
T. Bretagnon ◽  
A. Jean ◽  
P. Silvestre ◽  
S. Bourassa ◽  
R. Le Van Mao ◽  
...  

The deep-level transient spectroscopy technique was applied to the study of deep electron traps existing in n-type GaAs epitaxial layers that were prepared by the close-spaced vapor transport technique using three kinds of sources (semi-insulator-undoped, Zn-doped and Si-doped GaAs). Two midgap electron traps labelled ELCS1 and EL2 were observed in all layers regardless of the kind of source used. In addition, the effect of the electric field on the emission rate of ELCS1 is discussed and its identification to ETX2 and EL12 is suggested.


1998 ◽  
Vol 532 ◽  
Author(s):  
C. R. Cho ◽  
R. A. Brown ◽  
O. Kononchuk ◽  
N. Yarykin ◽  
G. Rozgonyi ◽  
...  

ABSTRACTThe evolution of defects in Czochralski and epitaxial p- and n-type silicon wafers following irradiation with He. Si or Ge ions at 80 K has been investigated by in situ deep level transient spectroscopy (DLTS). Defect annealing and formation reactions have been observed over the temperature range 80–350 K. In p-type silicon, new species-dependent levels are observed immediately after implantation, but these levels anneal out at or below room temperature. The wellknown divacancy and interstitial defects, usually reported after room temperature implantation, are revealed in the DLTS spectra only upon annealing at 160–200 K. In n-type silicon, vacancy-oxygen pairs are observed immediately after implantation. However, vacancy-related defects continue to form over a broad temperature range in samples implanted with Si or Ge. These observations are consistent with a model whereby vacancies and interstitials are released from defect clusters at temperatures >200 K to form divacancies and other defect pairs which are stable at room temperature.


1982 ◽  
Vol 14 ◽  
Author(s):  
P. H. Campbell ◽  
O. Aina ◽  
B. J. Baliga ◽  
R. Ehle

ABSTRACTHigh temperature annealing of Si 3 N4 and SiO2 capped high purity LPE GaAs is shown to result in a reduction in the surface carrier concentration by about an order of magnitude. Au Schottky contacts made on the annealed samples were found to have severely degraded breakdown characteristics. Using deep level transient spectroscopy, deep levels at EC–.58eV, EC–.785eV were detected in the SiO2, capped samples and EC–.62eV, EC–.728eV in the Si3N4 capped Samples while none was detected in the unannealed samples.The electrical degradations are explained in terms of compensation mechanisns and depletion layer recombination-generation currents due to the deep levels.


Sign in / Sign up

Export Citation Format

Share Document