Defects Induced by Reactive Ion Etching in Ge Substrate

2014 ◽  
Vol 896 ◽  
pp. 241-244
Author(s):  
Kusumandari ◽  
Noriyuki Taoka ◽  
Wakana Takeuchi ◽  
Mitsuo Sakashita ◽  
Osamu Nakatsuka ◽  
...  

We investigated impacts of the Ar and CF4 plasma during reactive ion etching (RIE) on defect formation in the Ge substrates using the deep-level-transient-spectroscopy (DLTS) technique. It was found that the Ar plasma causes the roughening of the Ge surface. Moreover, the Ar plasma induces a defect with an energy level of 0.31 eV from the conduction band minimum in the Ge substrate, confirming by DLTS spectra. On the other hand, the CF4plasma hardly induces the surface roughness of Ge. However, the CF4plasma induces many kinds of electron and hole traps. It should be noted that the defects associated with Sb and interstitials are widely distributed to around 3-µm.

2010 ◽  
Vol 645-648 ◽  
pp. 759-762
Author(s):  
Koutarou Kawahara ◽  
Giovanni Alfieri ◽  
Michael Krieger ◽  
Tsunenobu Kimoto

In this study, deep levels are investigated, which are introduced by reactive ion etching (RIE) of n-type/p-type 4H-SiC. The capacitance of as-etched p-type SiC is remarkably small due to compensation or deactivation of acceptors. These acceptors can be recovered to the initial concentration of the as-grown sample after annealing at 1000oC. However, various kinds of defects remain at a total density of ~5× 1014 cm-3 in a surface-near region from 0.3 μm to 1.0 μm even after annealing at 1000oC. The following defects are detected by Deep Level Transient Spectroscopy (DLTS): IN2 (EC – 0.35 eV), EN (EC – 1.6 eV), IP1 (EV + 0.35 eV), IP2 (HS1: EV + 0.39 eV), IP4 (HK0: EV + 0.72 eV), IP5 (EV + 0.75 eV), IP7 (EV + 1.3 eV), and EP (EV + 1.4 eV). These defects generated by RIE can be significantly reduced by thermal oxidation and subsequent annealing at 1400oC.


1989 ◽  
Vol 148 ◽  
Author(s):  
Dominique Vuillaume ◽  
Jeff P. Gambino

ABSTRACTMetal-Oxide-silicon (MOS) capacitors have been fabricated on CFb reactive ion etched silicon (n and p types) in order to study the defects at the Si-Si02 interface and in the bulk of the substrate, produced by the combination of reactive ion etching (RIE) and oxidation. Bulk defects and fast interface states are analysed by Deep Level Transient Spectroscopy (DLTS) and the slow interface states in the oxide layer near the interface are probed by Tunnel-DLTS. A density of fast interface states in the range 1010-1011 cm−2 eV−1 is observed for capacitors (both n and p types) fabricated with either dry or wet oxidations, and is probably due to disrupted or strained bonds at the Si-SiO2 interface. The observation of bulk defects in the wet-RIE oxide samples but not in the dry-RIE oxide samples may be related to the shorter oxidation time for wet oxides (31mn) compared to dry oxides(190mn) and explained by a greater annealing of RIE induced defects during the dry oxidation. The bulk traps are identified to be related to carbon contamination, in SiC form, introduced during RIE. Finally, an increase of the slow interface states density is observed for the n-type dry oxide samples.


2020 ◽  
Vol 1004 ◽  
pp. 331-336
Author(s):  
Giovanni Alfieri ◽  
Lukas Kranz ◽  
Andrei Mihaila

SiC has currently attracted the interest of the scientific community for qubit applications. Despite the importance given to the properties of color centers in high-purity semi-insulating SiC, little is known on the electronic properties of defects in this material. In our study, we investigated the presence of electrically active levels in vanadium-doped substrates. Current mode deep level transient spectroscopy, carried out in the dark and under illumination, together with 1-D simulations showed the presence of two electrically active levels, one associated to a majority carrier trap and the other one to a minority carrier trap. The nature of the detected defects has been discussed in the light of the characterization performed on low-energy electron irradiated substrates and previous results found in the literature.


2000 ◽  
Vol 5 (S1) ◽  
pp. 922-928
Author(s):  
A. Hierro ◽  
D. Kwon ◽  
S. A. Ringel ◽  
M. Hansen ◽  
U. K. Mishra ◽  
...  

The deep level spectra in both p+-n homojunction and n-type Schottky GaN diodes are studied by deep level transient spectroscopy (DLTS) in order to compare the role of the junction configuration on the defects found within the n-GaN layer. Both majority and minority carrier DLTS measurements are performed on the diodes allowing the observation of both electron and hole traps in n-GaN. An electron level at Ec−Et=0.58 and 0.62 V is observed in the p+-n and Schottky diodes, respectively, with a concentration of ∼3−4×1014 cm−3 and a capture cross section of ∼1−5×10−15 cm2. The similar Arrhenius behavior indicates that both emissions are related to the same defect. The shift in activation energy is correlated to the electric field enhanced-emission in the p+-n diode, where the junction barrier is much larger. The p+-n diode configuration allows the observation of a hole trap at Et−Ev=0.87 eV in the n-GaN which is very likely related to the yellow luminescence band.


2012 ◽  
Vol 717-720 ◽  
pp. 251-254 ◽  
Author(s):  
Bernd Zippelius ◽  
Alexander Glas ◽  
Heiko B. Weber ◽  
Gerhard Pensl ◽  
Tsunenobu Kimoto ◽  
...  

Deep Level Transient Spectroscopy (DLTS) and Double-correlated DLTS (DDLTS) measurements have been conducted on Schottky contacts fabricated on n-type 4H-SiC epilayers using different contact metals in order to separate the EH6- and EH7-centers, which usually appear as a broad double peak in DLTS spectra. The activation energy of EH6(EC- ET(EH6) = 1.203 eV) turns out to be independent of the electric field. As a consequence, EH6is acceptor-like according to the missing Poole-Frenkel effect. Therefore, it can be excluded that the EH6-center and the prominent acceptor-like Z1/2-center belong to different charge states of the same microscopic defect as theoretically suggested. It is proposed that EH6is a complex containing a carbon vacancy and another component available at high concentrations. The activation energy of EH7(EC- ET(EH7) = 1.58 eV) has been evaluated indirectly by fitting the DLTS spectra of the EH6/7double peak taking the previously determined parameters of EH6into account.


1998 ◽  
Vol 532 ◽  
Author(s):  
C. R. Cho ◽  
R. A. Brown ◽  
O. Kononchuk ◽  
N. Yarykin ◽  
G. Rozgonyi ◽  
...  

ABSTRACTThe evolution of defects in Czochralski and epitaxial p- and n-type silicon wafers following irradiation with He. Si or Ge ions at 80 K has been investigated by in situ deep level transient spectroscopy (DLTS). Defect annealing and formation reactions have been observed over the temperature range 80–350 K. In p-type silicon, new species-dependent levels are observed immediately after implantation, but these levels anneal out at or below room temperature. The wellknown divacancy and interstitial defects, usually reported after room temperature implantation, are revealed in the DLTS spectra only upon annealing at 160–200 K. In n-type silicon, vacancy-oxygen pairs are observed immediately after implantation. However, vacancy-related defects continue to form over a broad temperature range in samples implanted with Si or Ge. These observations are consistent with a model whereby vacancies and interstitials are released from defect clusters at temperatures >200 K to form divacancies and other defect pairs which are stable at room temperature.


1998 ◽  
Vol 510 ◽  
Author(s):  
Shabih Fatima ◽  
Jennifer Wong-Leung ◽  
John Fitz Gerald ◽  
C. Jagadish

AbstractSubthreshold damage in p-type Si implanted and annealed at elevated temperature is characterized using deep level transient spectroscopy (DLTS) and transmission electron microscopy (TEM). P-type Si is implanted with Si, Ge and Sn with energies in the range of 4 to 8.5 MeV, doses from 7 × 1012to 1×1014cm−2and all annealed at 800°C for 15 min. For each implanted specie, DLTS spectra show a transition dose called threshold dose above which point defects transform in to extended defects. DLTS measurements have shown for the doses below threshold, a sharp peak, corresponding to the signature of point defects and for doses above threshold a broad peak indicating the presence of extended defects. This is found to be consistent with TEM analyses where no defects are seen for the doses below threshold and the presence of extended defects for the doses above threshold. This suggests a defect transformation regime where point defects present below threshold are acting like nucleating sites for the extended defects. Also the mass dependence on the damage evolution has been observed, where rod-like defects are observed in the case of Si and (rod-like defects and loops) for Ge and Sn despite the fact that peak concentration of vacancies for Ge and Sn are normalized to the peak number of vacancies for Si.


Sign in / Sign up

Export Citation Format

Share Document