Plasma Diagnostic of a TCDDC System Using a Quadropole Mass Spectrometer

1989 ◽  
Vol 149 ◽  
Author(s):  
M. Vieira ◽  
A. Maçarico ◽  
R. Martins ◽  
I. Ferreira ◽  
L. Guimarāes

ABSTRACTSpecies formed during the decomposition of silane-methane-hydrogen mixtures ([SiH4]x:[CH4]y:[H2]z), by spatial plasma separation technique using the TCDDC (Two Consecutive Decomposition and Deposition Chambre) systeml, are evaluated by mass spectrometric analysis and related with the structural and electro-optical properties for either amorphous (a-) or microcrystalline (μc-) thin films. Results obtained show that in the plasma region, the main reaction is the direct fragmentation of SiH4 by electron impact whilst near the growing surface, the main detected species are excited. The kind of species and their intensity depend strongly on the power density (dp), mixture gas ratio (g = CH4 /SiH4+CH4), static electromagnetic (ξ, B) fields and r.f. frequency (f), used. Since CH4 has a threshold decomposition higher than that one of SiH4, the species presented at the plasma region are, mainly, methyl, dimethyl and CH2-CH2 graphitic-like chains depending, mostly, on dp and on g. By diluting the mixture in H2, we observe the existence of active H2 species that, for high dp, may lead to a transition from the amorphous to microcrystalline phase, as well as a carbon incorporation in the amorphous tissue as graphitic-like bonds. This allow us to infer the merit of the TCDDC system in producing a-/μc-thin films that can be applied to photovoltaic and other applications.

2014 ◽  
Vol 976 ◽  
pp. 25-29
Author(s):  
Roberto Castillo-Ojeda ◽  
Joel Diaz-Reyes ◽  
Miguel Galván-Arellano ◽  
Ramon Peña-Sierra

We have studied the optical properties of GaAs and AlxGa1-xAs thin films using low-temperature photoluminescence and Fourier transform infrared spectroscopy. The GaAs and its alloys were grown by MOCVD using solid arsenic instead of arsine, as the arsenic precursor. The gallium and aluminium precursors were trimethylgallium (TMGa) and trimethylaluminium (TMAl), respectively. Some difficulties for growing AlxGa1-xAs by solid-arsenic-based MOCVD system are the composition homogeneity of the layers and the oxygen and carbon incorporation during the growth process. The composition homogeneity of the films was evaluated by low-temperature photoluminescence. Infrared measurements on the samples allowed the identification of the residual impurities, which are carbon-substitutional, Ga2O3, molecular oxygen, humidity and two unidentified impurities. Samples grown at temperatures lower than 750°C were highly resistive, independently of the ratio V/III used; the samples grown at higher temperatures were n-type, as it was proved by Hall effect measurements.


2015 ◽  
Vol 41 (5) ◽  
pp. 6187-6193 ◽  
Author(s):  
C.V. Ramana ◽  
M. Vargas ◽  
G.A. Lopez ◽  
M. Noor-A-Alam ◽  
M.J. Hernandez ◽  
...  

2013 ◽  
Vol 2013 ◽  
pp. 1-6 ◽  
Author(s):  
Senthuran Karthick Kumar ◽  
Sepperumal Murugesan ◽  
Santhanakrishnan Suresh ◽  
Samuel Paul Raj

Nanostructured cupric oxide (CuO) thin films have been deposited on copper (Cu) substrates at different substrate temperatures and oxygen to argon gas ratios through direct current (DC) reactive magnetron sputtering. The deposited CuO thin films are characterized by using X-ray diffraction (XRD), scanning electron microscopy (SEM), energy dispersive spectroscopy (EDS), profilometry, and spectrophotometry techniques. The crystalline phases, morphology, optical properties, and photothermal conversion efficiency of the CuO thin films are found to be significantly influenced by the change in substrate temperature and oxygen to argon gas ratio. The variations in the substrate temperature and oxygen to argon gas ratio have induced changes in Cu+ and Cu2+ concentrations of the CuO thin films that result in corresponding changes in their optical properties. The CuO thin film prepared at a substrate temperature of 30°C and O2 to Ar gas ratio of 1 : 1 has exhibited high absorptance and low emittance; thus, it could be used as a solar selective absorber in solar thermal gadgets.


1983 ◽  
Vol 44 (C10) ◽  
pp. C10-363-C10-366 ◽  
Author(s):  
J. Vlieger ◽  
M. M. Wind

2019 ◽  
Vol 9 (3) ◽  
pp. 161
Author(s):  
Sung-Eun Cho ◽  
Hyojin Chae ◽  
Hyung-Doo Park ◽  
Sail Chun ◽  
Yong-Wha Lee ◽  
...  

2015 ◽  
Vol 60 (6) ◽  
pp. 511-520 ◽  
Author(s):  
A.A. Efremov ◽  
◽  
V.G. Litovchenko ◽  
V.P. Melnik ◽  
O.S. Oberemok ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document