Determination of the Strain Source in Mo/Ni Multilayers

1990 ◽  
Vol 187 ◽  
Author(s):  
L.J. Chyung ◽  
B.M. Clemens ◽  
S. Brennan

AbstractStructural characterization and strain measurements were conducted on Mo/Ni multilayers, with bilayer periods between 10 Å and 200 Å, utilizing symmetric, asymmetrin, and grazing incidence x-ray diffraction techniques. The structural difference between the 15 Å and 20 Å modulation wavelength samples, evident in the symmetric high angle diffraction spectra, is attributed to the absence of crystalline registry in the early stages of sputter deposition, yielding crystalline order only when the bilayer deposition thickness exceeded 15 Å. The dominant mechanism for the observed modulation wavelength dependent strain behavior, both in the growth direction and in the plane of the film, is consistent with a coherency strain model. The orientation relationship predicted for the Mo/Ni system, based on their atomic radii ratio is the Nishiyama-Wasserman relationship, (110)BCC//(111)FCCand[001]BCC//[101]FCC. This relationship would provide the source for the observed coherency strain.

1994 ◽  
Vol 89 (7) ◽  
pp. 583-586 ◽  
Author(s):  
Toshihiro Shimada ◽  
Yukito Furukawa ◽  
Etsuo Arakawa ◽  
Kunikazu Takeshita ◽  
Tadashi Matsushita ◽  
...  

2007 ◽  
Vol 22 (4) ◽  
pp. 319-323 ◽  
Author(s):  
Jianfeng Fang ◽  
Jing Huo ◽  
Jinyuan Zhang ◽  
Yi Zheng

The structure of a chemical-vapor-deposited (CVD) diamond thin film on a Mo substrate was studied using quasi-parallel X-ray and glancing incidence techniques. Conventional X-ray diffraction analysis revealed that the sample consists of a diamond thin film, a Mo2C transition layer, and Mo substrate. The Mo2C transition layer was formed by a chemical reaction between the diamond film and the Mo substrate during the CVD process. A method for layer-thickness determination of the thin film and the transition layer was developed. This method was based on a relationship between X-ray diffraction intensities from the transition layer or its substrate and a function of grazing incidence angles. Results of glancing incidence X-ray diffraction analysis showed that thicknesses of the diamond thin film and the Mo2C transition layer were determined successfully with high precision.


Author(s):  
Stijn Hertele´ ◽  
Wim De Waele ◽  
Rudi Denys

It is standard practice to approximate the post-yield behavior of pipeline steels by means of the Ramberg-Osgood equation. However, the Ramberg-Osgood equation is often unable to accurately describe the stress-strain behavior of contemporary pipeline steels with a high Y/T ratio. This is due to the occurrence of two distinct, independent stages of strain hardening. To address this problem, the authors recently developed a new ‘UGent’ stress-strain model which provides a better description of those steels. This paper elaborates a methodology to estimate suited parameter values for the UGent model, starting from a set of tensile characteristics. Using the proposed methodology, good approximations have been obtained for a preliminary series of eight investigated stress-strain curves. Next to all common tensile characteristics, the 1% proof stress is needed. The authors therefore encourage the future acquisition of this stress level during tensile tests. Currently, the authors perform a further in-depth validation which will be reported in the near future.


Hyomen Kagaku ◽  
2016 ◽  
Vol 37 (9) ◽  
pp. 429-434 ◽  
Author(s):  
Ryohei TSURUTA ◽  
Yuta MIZUNO ◽  
Takuya HOSOKAI ◽  
Tomoyuki KOGANEZAWA ◽  
Hisao ISHII ◽  
...  

2004 ◽  
Vol 36 (1-3) ◽  
pp. 11-19 ◽  
Author(s):  
M. Sztucki ◽  
T.U. Schülli ◽  
T.H. Metzger ◽  
E. Beham ◽  
D. Schuh ◽  
...  

2016 ◽  
Vol 23 (3) ◽  
pp. 729-734 ◽  
Author(s):  
Roland Resel ◽  
Markus Bainschab ◽  
Alexander Pichler ◽  
Theo Dingemans ◽  
Clemens Simbrunner ◽  
...  

Dynamical scattering effects are observed in grazing-incidence X-ray diffraction experiments using an organic thin film of 2,2′:6′,2′′-ternaphthalene grown on oxidized silicon as substrate. Here, a splitting of all Bragg peaks in the out-of-plane direction (z-direction) has been observed, the magnitude of which depends both on the incidence angle of the primary beam and the out-of-plane angle of the scattered beam. The incident angle was varied between 0.09° and 0.25° for synchrotron radiation of 10.5 keV. This study reveals comparable intensities of the split peaks with a maximum for incidence angles close to the critical angle of total external reflection of the substrate. This observation is rationalized by two different scattering pathways resulting in diffraction peaks at different positions at the detector. In order to minimize the splitting, the data suggest either using incident angles well below the critical angle of total reflection or angles well above, which sufficiently attenuates the contributions from the second scattering path. This study highlights that the refraction of X-rays in (organic) thin films has to be corrected accordingly to allow for the determination of peak positions with sufficient accuracy. Based thereon, a reliable determination of the lattice constants becomes feasible, which is required for crystallographic structure solutions from thin films.


Sign in / Sign up

Export Citation Format

Share Document