A Statistical Characterization of Electromigration-Induced Open Failures in 2-Level Metal Structures

1991 ◽  
Vol 225 ◽  
Author(s):  
H. Kahn ◽  
C. V. Thompson

ABSTRACTA new electromigration test structure has been designed and fabricated which allows statistical characterization of current-induced open failures at vias, under varying current flow geometries. Results for a 2-level Al-Cu metallization system with W-filled 1.0 μm vias reveal no differences in via lifetimes for parallel, anti-parallel, or perpendicular current flows. However, a factor of 7 improvement in the total average via resistance produces an order of magnitude improvement in lifetimes. Line reliability remains superior to the reliability of the vias, indicating that the vias are the “weak links” in the system.A model for evaluating temperature and current density effects which incorporates the atomic flux equation has been developed and used to make reliability predictions for extrapolations to operating conditions. The model suggests that the median time to failure of a 2-level ietal structure with an average via resistance of two ohms will be 2.7×1017 hours for operating conditions of 2×105 A/cm2 and 125°C.

Energies ◽  
2021 ◽  
Vol 14 (3) ◽  
pp. 759
Author(s):  
Andrea Mariscotti

Accurate and comprehensive methods for the assessment of radiated electromagnetic emissions in modern electric transportation systems are a necessity. The characteristics and susceptibility of modern victim signaling and communication radio services, operating within and outside the right-of-way, require an update of the measurement methods integrating or replacing the swept frequency technique with time domain approaches. Applicable standards are the EN 50121 (equivalent to the IEC 62236) and Urban Mass Transport Association (UMTA) with additional specifications from project contracts. This work discusses the standardized methods and settings, and the representative operating conditions, highlighting areas where improvements are possible and opportune (statistical characterization of measurement results, identification and distinction of emissions and line resonances, and narrowband and broadband phenomena). In particular for the Electromagnetic Compatibility (EMC) assessment with new Digital Communication Systems, the characterization of time distribution of spectral properties is discussed, e.g., by means of Amplitude Probability Distribution and including time distribution information. The problem of determination of site and setup uncertainty and repeatability is also discussed, observing on one hand the lack of clear indications in standards and, on the other hand, the non-ideality and intrinsic variability of measurement conditions (e.g., rolling stock operating conditions, synchronization issues, and electric arc intermittence).


2020 ◽  
Author(s):  
Xiaoyuan Wang ◽  
Pengfei Zhou ◽  
Jason Eshraghian ◽  
Chih-Yang Lin ◽  
Herbert Ho-Ching Iu ◽  
...  

<div>This paper presents the first experimental demonstration</div><div>of a ternary memristor-CMOS logic family. We systematically</div><div>design, simulate and experimentally verify the primitive</div><div>logic functions: the ternary AND, OR and NOT gates. These are then used to build combinational ternary NAND, NOR, XOR and XNOR gates, as well as data handling ternary MAX and MIN gates. Our simulations are performed using a 50-nm process which are verified with in-house fabricated indium-tin-oxide memristors, optimized for fast switching, high transconductance, and low current leakage. We obtain close to an order of magnitude improvement in data density over conventional CMOS logic, and a reduction of switching speed by a factor of 13 over prior state-of-the-art ternary memristor results. We anticipate extensions of this work can realize practical implementation where high data density is of critical importance.</div>


1997 ◽  
Vol 35 (2-3) ◽  
pp. 85-91
Author(s):  
D. A. Barton ◽  
J. D. Woodruff ◽  
T. M. Bousquet ◽  
A. M. Parrish

If promulgated as proposed, effluent guidelines for the U.S. pulp and paper industry will impose average monthly and maximum daily numerical limits of discharged AOX (adsorbable organic halogen). At this time, it is unclear whether the maximum-day variability factor used to establish the proposed effluent guidelines will provide sufficient margin for mills to achieve compliance during periods of normal but variable operating conditions within the pulping and bleaching processes. Consequently, additional information is needed to relate transient AOX loadings with final AOX discharges. This paper presents a simplistic dynamic model of AOX decay during treatment. The model consists of hydraulic characterization of an activated sludge process and a first-order decay coefficient for AOX removal. Data for model development were acquired by frequent collection of influent and effluent samples at a bleach kraft mill during a bleach plant shutdown and startup sequence.


Author(s):  
A. Brown ◽  
K. Krishnan ◽  
L. Wayne ◽  
P. Peralta ◽  
S. N. Luo ◽  
...  

Global and local microstructural weak links for spall damage were investigated using 3-D characterization in polycrystalline (PC) and multicrystalline (MC) copper samples, respectively. All samples were shocked via flyer-target plate experiments using a laser drive at low pressures (2–6 GPa). The flyer plates measured approximately 500 μm thick and 8 mm in diameter and the target plates measured approximately 1000 μm thick and 10 mm in diameter. Electron Backscattering Diffraction (EBSD) and optical microscopy were used to determine to presence of voids and relate them to the surrounding microstructure. Statistics on the strength of grain boundaries (GBs) was conducted by analyzing PC samples and collecting the misorientation across GBs with damage present, and it was found that a misorientation range of 25–50° is favorable for damage. Statistics were also taken of copper PC samples that had undergone different heat treatments and it was found that although the 25–50° range is less dominant, it is still favorable for damage nucleation. Removal of initial plastic strain via heat treatments and an increase in Σ3 CSL boundaries, indicative of strong annealing twins, also led to an increased amount of transgranular damage. 3-D X-ray tomography data were used to investigate the shape of the voids present in untreated, as received and heat treated samples. It was found that the as received sample contained a higher amount of “disk”, or, “sheet-like” voids indicative of intergranular damage, whereas the heat treated samples had a higher fraction of spherical shaped voids, indicative of transgranular damage. MC samples were used to study microstructural weak links for spall damage because the overall grain size is much larger than the average void size, making it possible to determine which GBs nucleated damage. Simulations and experimental analysis of damage sites with large volumes indicate that high Taylor factor mismatches with respect to the crystallographic grain GB normal is the primary cause for the nucleation of damage at a GB interface and a low Taylor factor along the shock direction in either grain drives void growth perpendicular to the GB. Cases where experimental results show damage and simulation results show no damage are attributed to the presence of an intrinsic microstructural weak link, such as an incoherent twin boundary.


GPS Solutions ◽  
2021 ◽  
Vol 25 (3) ◽  
Author(s):  
Guo Chen ◽  
Renyu Zhou ◽  
Zhigang Hu ◽  
Yifei Lv ◽  
Na Wei ◽  
...  

2014 ◽  
Vol 2014 ◽  
pp. 1-14 ◽  
Author(s):  
Quanjun Yin ◽  
Long Qin ◽  
Xiaocheng Liu ◽  
Yabing Zha

In robotics, Generalized Voronoi Diagrams (GVDs) are widely used by mobile robots to represent the spatial topologies of their surrounding area. In this paper we consider the problem of constructing GVDs on discrete environments. Several algorithms that solve this problem exist in the literature, notably the Brushfire algorithm and its improved versions which possess local repair mechanism. However, when the area to be processed is very large or is of high resolution, the size of the metric matrices used by these algorithms to compute GVDs can be prohibitive. To address this issue, we propose an improvement on the current algorithms, using pointerless quadtrees in place of metric matrices to compute and maintain GVDs. Beyond the construction and reconstruction of a GVD, our algorithm further provides a method to approximate roadmaps in multiple granularities from the quadtree based GVD. Simulation tests in representative scenarios demonstrate that, compared with the current algorithms, our algorithm generally makes an order of magnitude improvement regarding memory cost when the area is larger than210×210. We also demonstrate the usefulness of the approximated roadmaps for coarse-to-fine pathfinding tasks.


2010 ◽  
Author(s):  
David Levitz ◽  
Ardalan Ardeshiri ◽  
Jabeer Ahmed ◽  
Daniel S. Gareau ◽  
Steven L. Jacques

Sign in / Sign up

Export Citation Format

Share Document