LPE Growth of Doped Sige Layers Using Multicomponent Phase Diagrams Calculations

1991 ◽  
Vol 234 ◽  
Author(s):  
J.-P. Fleurial ◽  
A. Borshchevsky ◽  
D. Irvine

ABSTRACTHeavy doping of n-type Si-Ge alloys is necessary for improving their high temperature thermoelectric properties. Because of the limited solid solubility of the best dopant available, phosphorus, simultaneous additions of gallium were started several years ago. The substantially higher carrier concentration values obtained in such super-saturated, hot-pressed SiGe/GaP materials point to significant changes in dopant solid solubilities. To better understand the behavior of these alloys, investigation of homogeneous single crystalline materials were needed. As a near-thermodynamic equilibrium technique with processing temperatures well below the melting point of these materials, liquid-phase epitaxy (LPE) was particularly suited to the study of the mechanisms of multidoping. Based on successful crystal growth of Si1-xGex thin films using metals such as Ga, In, Sn and Bi for solvents, several experiments were designed to grow multi-doped SiGe layers with III-V dopant combinations. Knowledge of ternary and quaternary phase diagrams is essential to develop the LPE process. Ternary Si-Ge-M systems computations in good agreement with experimental determinations were used to calculate some of the necessary multicomponent phase diagrams and assess the strength of the various III–V interactions.

Author(s):  
William Krakow

It has long been known that defects such as stacking faults and voids can be quenched from various alloyed metals heated to near their melting point. Today it is common practice to irradiate samples with various ionic species of rare gases which also form voids containing solidified phases of the same atomic species, e.g. ref. 3. Equivalently, electron irradiation has been used to produce damage events, e.g. ref. 4. Generally all of the above mentioned studies have relied on diffraction contrast to observe the defects produced down to a dimension of perhaps 10 to 20Å. Also all these studies have used ions or electrons which exceeded the damage threshold for knockon events. In the case of higher resolution studies the present author has identified vacancy and interstitial type chain defects in ion irradiated Si and was able to identify both di-interstitial and di-vacancy chains running through the foil.


2007 ◽  
Vol 43 (4) ◽  
pp. 239-242
Author(s):  
S. Kh. Suleimanov ◽  
O. A. Dudko ◽  
V. G. Dyskin ◽  
Z. S. Settarova ◽  
M. U. Dzhanklych

Alloy Digest ◽  
1970 ◽  
Vol 19 (12) ◽  

Abstract CRM MOLYBDENUM-50 RHENIUM is a high-melting-point alloy for applications such as electronics tube components, electrical contacts, thermionic converters, thermocouples, heating elements and rocket thrusters. All products are produced by powder metallurgy. This datasheet provides information on composition, physical properties, hardness, elasticity, and tensile properties as well as creep. It also includes information on high temperature performance and corrosion resistance as well as forming, heat treating, machining, joining, and surface treatment. Filing Code: Mo-11. Producer or source: Chase Brass & Copper Company Inc..


Alloy Digest ◽  
1970 ◽  
Vol 19 (8) ◽  

Abstract CRM RHENIUM is a commercially pure, high-melting-point metal for applications such as electronics tube components, electrical contacts, thermionic converters, thermocouples, heating elements and rocket thrusters. All products are produced by powder metallurgy. This datasheet provides information on composition, physical properties, hardness, elasticity, and tensile properties as well as creep. It also includes information on high temperature performance and corrosion resistance as well as forming, heat treating, machining, joining, and surface treatment. Filing Code: Re-1. Producer or source: Chase Brass & Copper Company Inc..


2020 ◽  
Vol 183 ◽  
pp. 05002 ◽  
Author(s):  
Hamza Belkhanchi ◽  
Younes Ziat ◽  
Maryama Hammi ◽  
Charaf Laghlimi ◽  
Abdelaziz Moutcine ◽  
...  

In this study, we have investigated the surface analysis and optoelectronic properties on the synthesis of N-CNT/TiO2 composites thin films, using sol gel method for a dye synthetized solar cell (DSSC) which is found to be simple and economical route. The titanium dioxide based solar cells are an exciting photovoltaic candidate; they are promising for the realization of large area devices. That can be synthetized by room temperature solution processing, with high photoactive performance. In the present work, we stated comparable efficiencies by directing our investigation on obtaining Sol Gel thin films based on N-CNT/TiO2, by dispersing nitrogen (N) doped carbon nanotubes (N-CNTs) powders in titanium tetraisopropoxyde (TTIP). The samples were assessed in terms of optical properties, using UV—visible absorption spectroscopic techniques. After careful analysis of the results, we have concluded that the mentioned route is good and more efficient in terms of optoelectronic properties. The gap of “the neat” 0.00w% N-CNT/TiO2 is of 3eV, which is in a good agreement with similar gap of semiconductors. The incorporated “w%NCNTs” led to diminishing the Eg with increasing N-CNTs amount. These consequences are very encouraging for optoelectronic field.


Author(s):  
Xiaoqiao Li ◽  
Linming Zhou ◽  
Han Wang ◽  
Dechao Meng ◽  
Guannan Qian ◽  
...  

Crystalline materials are routinely produced via high-temperature synthesis and show size-dependent properties; however, a rational approach to regulating their crystal growth has not been established. Here we show that dopants...


2021 ◽  
Vol 415 ◽  
pp. 127097
Author(s):  
P.C. Silva Neto ◽  
D.A. Ramirez ◽  
A.R. Terto ◽  
J.Y.E. Santos ◽  
J.C.V. Dos Santos ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document