Application of Computer Methods for Calculation of Multicomponent Phase Diagrams of High Temperature Structural Ceramics.

1986 ◽  
Author(s):  
Larry Kaufman
2021 ◽  
Vol 10 (1) ◽  
pp. 586-595
Author(s):  
Ruzhuan Wang ◽  
Dingyu Li ◽  
Weiguo Li

Abstract Hardness is one of the important mechanical properties of high-temperature structural ceramics and their composites. In spite of the extensive use of the materials in high-temperature applications, there are few theoretical models for analyzing their temperature-dependent hardness. To fill this gap in the available literature, this work is focused on developing novel theoretical models for the temperature dependence of the hardness of the ceramics and their composites. The proposed model is just expressed in terms of some basic material parameters including Young’s modulus, melting points, and critical damage size corresponding to plastic deformation, which has no fitting parameters, thereby being simple for materials scientists and engineers to use in the material design. The model predictions for the temperature dependence of hardness of some oxide ceramics, non-oxide ceramics, ceramic–ceramic composites, diamond–ceramic composites, and ceramic-based cermet are presented, and excellent agreements with the experimental measurements are shown. Compared with the experimental measurements, the developed model can effectively save the cost when applied in the material design, which could be used to predict at any targeted temperature. Furthermore, the models could be used to determine the underlying control mechanisms of the temperature dependence of the hardness of the materials.


2008 ◽  
Vol 403 ◽  
pp. 77-80 ◽  
Author(s):  
Peter Kroll

A combination of first-principle and thermochemical calculations is applied to compute the phase diagrams of rhenium-nitrogen and of ruthenium-nitrogen at elevated temperature and high pressure. We augment total energy calculations with our approach to treat the nitrogen fugacity at high pressures. We predict a sequential nitridation of Re at high-pressure/high-temperature conditions. At 3000 K, ReN will form from Re and nitrogen at about 32 GPa. A ReN2 with CoSb2-type structure may be achieved at pressures exceeding 50 GPa at this temperature. Marcasite-type RuN2 will be attainable at 3000 K at pressures above 30 GPa by reacting Ru with nitrogen.


1991 ◽  
Vol 234 ◽  
Author(s):  
J.-P. Fleurial ◽  
A. Borshchevsky ◽  
D. Irvine

ABSTRACTHeavy doping of n-type Si-Ge alloys is necessary for improving their high temperature thermoelectric properties. Because of the limited solid solubility of the best dopant available, phosphorus, simultaneous additions of gallium were started several years ago. The substantially higher carrier concentration values obtained in such super-saturated, hot-pressed SiGe/GaP materials point to significant changes in dopant solid solubilities. To better understand the behavior of these alloys, investigation of homogeneous single crystalline materials were needed. As a near-thermodynamic equilibrium technique with processing temperatures well below the melting point of these materials, liquid-phase epitaxy (LPE) was particularly suited to the study of the mechanisms of multidoping. Based on successful crystal growth of Si1-xGex thin films using metals such as Ga, In, Sn and Bi for solvents, several experiments were designed to grow multi-doped SiGe layers with III-V dopant combinations. Knowledge of ternary and quaternary phase diagrams is essential to develop the LPE process. Ternary Si-Ge-M systems computations in good agreement with experimental determinations were used to calculate some of the necessary multicomponent phase diagrams and assess the strength of the various III–V interactions.


Sign in / Sign up

Export Citation Format

Share Document