In Situ Characterization of the Pulsed Laser DepositIon of Magnetic Thin Films

1991 ◽  
Vol 236 ◽  
Author(s):  
A.J. Paul ◽  
D.W. Bonnell ◽  
J.W. Hastie ◽  
P.K. Schenck ◽  
R.D. Shull ◽  
...  

AbstractPulsed Laser Deposition (PLD) has been proven as an effective means of depositing films from refractory targets. In our earlier work, either Nd/YAG or excimer lasers, interacting directly with target surfaces, were used to deposit thin films of high Tc superconductors, high dielectric constant BaTiO3 and ferroelectric PbZr0.53Ti0.47O3 (PZT). Time-resolved molecular beam mass spectrometry and optical emission spectroscopic techniques have been developed to characterize the vapor plumes responsible for film formation. More recently, this work has been extended to the PLD of magnetic thin films of Ag- Fe3O4 nanocomposites using excimer (ArF*, 193 nm) laser excitation. Optical emission spectra of the excited vapor phase species, formed during the plume generation and material deposition process, indicate that physically compressed powdered metal targets have inadequate homogeneity for film production, compared to targets that are chemically produced. An in situ Laser-induced Vaporization Mass Spectrometry (LVMS) technique utilizing a Nd/YAG (1064 nm) laser has been used to determine Time of-Arrival (TOA) profiles of the atomic, molecular, and ionic species produced in the plumes of Ag-Fe3O4. The neutral species TOA profiles indicate velocity distributions that are multimodal and not Maxwellian. These observations are in contrast to the TOA profiles observed from one-component targets (Ag or Fe3O4), where a single Maxwellian velocity distribution is found. Mössbauer effect measurements of the thin films have been made for correlation with the gas phase studies.

1991 ◽  
Vol 235 ◽  
Author(s):  
A. J. Paul ◽  
D. W. Bonnell ◽  
J. W. Hastie ◽  
P. K. Schenck ◽  
R. D. Shull ◽  
...  

ABSTRACTPulsed Laser Deposition (PLD) has been proven as an effective means of depositing films from refractory targets. In our earlier work, either Nd/YAG or excimer lasers, interacting directly with target surfaces, were used to deposit thin films of high Tc superconductors, high dielectric constant BaTiO3 and ferroelectric PbZr0.53Ti0.47Os3 (PZT). Time-resolved molecular beam mass spectrometry and optical emission spectroscopic techniques have been developed to characterize the vapor plumes responsible for film formation. More recently, this work has been extended to the PLD of magnetic thin films of Ag-Fe3O4 nanocomposites using excimer (ArF*, 193 nm) laser excitation. Optical emission spectra of the excited vapor phase species, formed during the plume generation and material deposition process, indicate that physically compressed powdered metal targets have inadequate homogeneity for film production, compared to targets that are chemically produced. An in situ Laser-induced Vaporization Mass Spectrometry (LVMS) technique utilizing a Nd/YAG (1064 nm) laser has been used to determine Time-of-Arrival (TOA) profiles of the atomic, molecular, and ionic species produced in the plumes of Ag-Fe3O4 The neutral species TOA profiles indicate velocity distributions that are multimodal and not Maxwellian. These observations are in contrast to the TOA profiles observed from one-component targets (Ag or Fe3O4), where a single Maxwellian velocity distribution is found. Mossbauer effect measurements of the thin films have been made for correlation with the gas phase studies.


1999 ◽  
Vol 574 ◽  
Author(s):  
D. Kumar ◽  
K. G. Cho ◽  
Zhang Chen ◽  
V. Craciun ◽  
P. H. Holloway ◽  
...  

AbstractThe growth, structural and cathodoluminescent (CL) properties of europium activated yttrium oxide (Eu:Y2O3) thin films are reported. The Eu:Y2O3 films were grown in-situ using a pulsed laser deposition technique. Our results show that Eu:Y2O3 films can grow epitaxially on (100) LaAlO3 substrates under optimized deposition parameters. The epitaxial growth of Eu:Y2O3 films on LaAlO3, which has a lattice mismatch of ∼ 60 %, is explained by matching of the atom positions in the lattices of the film and the substrate after a rotation. CL data from these films are consistent with highly crystalline Eu:Y2O3 films with an intense CL emission at 611 nm.


2014 ◽  
Vol 288 ◽  
pp. 381-391 ◽  
Author(s):  
Ying Wang ◽  
Rohit Medwal ◽  
Neeru Sehdev ◽  
Boluo Yadian ◽  
T.L. Tan ◽  
...  

2019 ◽  
Vol 3 (9) ◽  
pp. 55-63 ◽  
Author(s):  
Antonello Tebano ◽  
Carmela Aruta ◽  
Pier Gianni Medaglia ◽  
Giuseppe Balestrino ◽  
Norberto G. Boggio ◽  
...  

2005 ◽  
Vol 902 ◽  
Author(s):  
YauYau Tse ◽  
P. S. Suherman ◽  
T. J. Jackson ◽  
I. P. Jones

AbstractBa0.5Sr0.5TiO3 (BSTO) thin films were grown on (001) MgO using pulsed-laser deposition (PLD). The microstructures of in-situ and ex-situ annealed BSTO films were studied by X-ray diffraction and transmission electron microscopy (TEM). The films showed a cube on cube epitaxial relationship with <100> BSTO // <100> MgO. They were essentially single crystals with a columnar structure and possessed smooth surfaces. The interfaces of the BSTO films and substrates were atomically sharp, with misfit dislocations. Better crystallinity and full strain relaxation was obtained in films grown in 10-1 mbar oxygen and annealed ex-situ. A 30% increase in dielectric tuneability was achieved compared with in-situ annealing and deposition at 10-4 mbar. Threading dislocations are the dominant defects in the films grown in 10-1 mbar oxygen and annealed ex-situ, while the films with in-situ annealing show columnar structures with low angle boundaries.


2006 ◽  
Vol 252 (13) ◽  
pp. 4573-4577 ◽  
Author(s):  
Maria Branescu ◽  
A. Vailionis ◽  
I. Ward ◽  
J. Huh ◽  
G. Socol

1991 ◽  
Vol 27 (2) ◽  
pp. 1459-1462 ◽  
Author(s):  
R.M. Bowman ◽  
A.I. Ferguson ◽  
C.M. Pegrum

Vacuum ◽  
2002 ◽  
Vol 69 (1-3) ◽  
pp. 267-271 ◽  
Author(s):  
V.N Tsaneva ◽  
N.A Stelmashenko ◽  
I.N Martev ◽  
Z.H Barber ◽  
M.G Blamire

Sign in / Sign up

Export Citation Format

Share Document