Elastic Properties of Steps at Interphase Boundaries

1991 ◽  
Vol 238 ◽  
Author(s):  
G. J. Shiflet

ABSTRACTStresses are introduced in crystals at interphase boundaries where steps improve the registry of atoms. A model and mathematical analysis based on an approach previously taken by van der Merwe and Shiflet1–4 of the problem incorporating a coherent step are presented. Computed distributions of stresses, strains, dilatation and energy density in the form of contours and nets are given for a coherent monatomic step. It is concluded that the maximum stresses are quite large and the fields decay fairly rapidly with distance from the steps, the gradient of dilatation around steps will significantly affect diffusion kinetics of impurities and the strain energy seems too low to significantly enhance chemical processes.

1988 ◽  
Vol 20 (11-12) ◽  
pp. 167-173 ◽  
Author(s):  
S. E. Strand ◽  
R. M. Seamons ◽  
M. D. Bjelland ◽  
H. D. Stensel

The kinetics of methane-oxidizing bioreactors for the degradation of toxic organics are modeled. Calculations of the fluxes of methane and toxic chlorinated hydrocarbons were made using a biofilm model. The model simulated the effects of competition by toxics and mediane on their enzymatic oxidation by the methane monooxygenase. Dual-competitive-substrate/diffusion kinetics were used to model biofilm co-metabolism, integrating equations of the following form:where S1 and S2 are the local concentrations of methane and toxic compound, respectively, and r and K are the maximum uptake rates and Monod coefficients, and x is the distance into the biofilm.


2020 ◽  
Vol 28 ◽  
pp. 734-742
Author(s):  
Pietro Foti ◽  
Seyed Mohammad Javad Razavi ◽  
Liviu Marsavina ◽  
Filippo Berto

2021 ◽  
Vol 230 ◽  
pp. 111716
Author(s):  
Pietro Foti ◽  
Seyed Mohammad Javad Razavi ◽  
Majid Reza Ayatollahi ◽  
Liviu Marsavina ◽  
Filippo Berto

Author(s):  
Mircea Bîrsan

AbstractIn this paper, we present a general method to derive the explicit constitutive relations for isotropic elastic 6-parameter shells made from a Cosserat material. The dimensional reduction procedure extends the methods of the classical shell theory to the case of Cosserat shells. Starting from the three-dimensional Cosserat parent model, we perform the integration over the thickness and obtain a consistent shell model of order $$ O(h^5) $$ O ( h 5 ) with respect to the shell thickness h. We derive the explicit form of the strain energy density for 6-parameter (Cosserat) shells, in which the constitutive coefficients are expressed in terms of the three-dimensional elasticity constants and depend on the initial curvature of the shell. The obtained form of the shell strain energy density is compared with other previous variants from the literature, and the advantages of our constitutive model are discussed.


2021 ◽  
Vol 379 ◽  
pp. 138157
Author(s):  
Muhammad Mamoor ◽  
Ruqian Lian ◽  
Dashuai Wang ◽  
Yaying Dou ◽  
Yizhan Wang ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document