Microstructural Characteristics, Crack Frequency and Diffusion Kinetics of Functionally Graded Ti-Al Composite Coatings: Effects of Laser Energy Density (LED)

JOM ◽  
2018 ◽  
Vol 71 (3) ◽  
pp. 900-911 ◽  
Author(s):  
E. O. Olakanmi ◽  
M. Sepako ◽  
J. Morake ◽  
S. E. Hoosain ◽  
S. L. Pityana
1991 ◽  
Vol 238 ◽  
Author(s):  
G. J. Shiflet

ABSTRACTStresses are introduced in crystals at interphase boundaries where steps improve the registry of atoms. A model and mathematical analysis based on an approach previously taken by van der Merwe and Shiflet1–4 of the problem incorporating a coherent step are presented. Computed distributions of stresses, strains, dilatation and energy density in the form of contours and nets are given for a coherent monatomic step. It is concluded that the maximum stresses are quite large and the fields decay fairly rapidly with distance from the steps, the gradient of dilatation around steps will significantly affect diffusion kinetics of impurities and the strain energy seems too low to significantly enhance chemical processes.


2019 ◽  
Vol 25 (9) ◽  
pp. 1506-1515 ◽  
Author(s):  
Pei Wei ◽  
Zhengying Wei ◽  
Zhne Chen ◽  
Jun Du ◽  
Yuyang He ◽  
...  

Purpose This paper aims to study numerically the influence of the applied laser energy density and the porosity of the powder bed on the thermal behavior of the melt and the resultant instability of the liquid track. Design/methodology/approach A three-dimensional model was proposed to predict local powder melting process. The model accounts for heat transfer, melting, solidification and evaporation in granular system at particle scale. The proposed model has been proved to be a good approach for the simulation of the laser melting process. Findings The results shows that the applied laser energy density has a significantly influence on the shape of the molten pool and the local thermal properties. The relative low or high input laser energy density has the main negative impact on the stability of the scan track. Decreasing the porosity of the powder bed lowers the heat dissipation in the downward direction, resulting in a shallower melt pool, whereas pushing results in improvement in liquid track quality. Originality/value The randomly packed powder bed is calculated using discrete element method. The powder particle information including particle size distribution and packing density is taken into account in placement of individual particles. The effect of volumetric shrinkage and evaporation is considered in numerical model.


Nanoscale ◽  
2018 ◽  
Vol 10 (26) ◽  
pp. 12612-12624 ◽  
Author(s):  
Dipak Dutta ◽  
Andita Nataria Fitri Ganda ◽  
Jui-Kung Chih ◽  
Cheng-Chun Huang ◽  
Chung-Jen Tseng ◽  
...  

The interfacial chemistry and diffusion kinetics of a polymer–graphene nanocomposite anticorrosion coating were studied to minimize galvanic corrosion facilitated by the formation of an interconnected graphene percolation network.


2019 ◽  
Vol 48 (5) ◽  
pp. 506004
Author(s):  
刘孝谦 Liu Xiaoqian ◽  
骆 芳 Luo Fang ◽  
杜琳琳 Du Linlin ◽  
陆潇晓 Lu Xiaoxiao

Sign in / Sign up

Export Citation Format

Share Document