Characterization of the Complex Matrix of the Mytilus Edulis Shell and the Implications for Biomimetic Ceramics

1991 ◽  
Vol 255 ◽  
Author(s):  
J. A. Keith ◽  
S. A. Stockwell ◽  
D. H. Ball ◽  
W. S. Muller ◽  
D. L. Kaplan ◽  
...  

AbstractThe macromolecular matrix present in the composite shell of the blue mussel, Mytilus edulis, accounts for less than 1% of the shell by weight but is theorized to play a significant role in controlling the growth, morphology, and orientation of the CaCO3 that makes up the shell. The presence of several proteins in this matrix, only some of which have affinity for calcium, suggests a hierarchical structural model for the shell. Proteins were isolated under denaturing, reducing conditions and separated by centrifugation, gel electrophoresis, and high performance liquid chromatography. The major matrix proteins, both soluble and insoluble, were evaluated for amino acid composition, calcium binding, and glycosylation. Some N-terminal sequence data was collected. Non-proteinaceous components of the matrix were also analyzed. Comparison of the mussel shell matrix with the protein matrix of other molluscan systems suggests that this complexity is not unique to the mussel and may provide a key to the understanding of more generic biomineralization processes necessary for such applications as biomimetic ceramics.

2016 ◽  
Vol 672 ◽  
pp. 222-231 ◽  
Author(s):  
Alexandre Parker ◽  
Françoise Immel ◽  
Nathalie Guichard ◽  
Cédric Broussard ◽  
Frédéric Marin

Mollusc shells are organic-inorganic composites that are often preserved in the fossil record. However, the way the organic fraction, also called shell matrix, gets fossilized remains an unsolved question, in spite of several old and more recent studies. In the present paper, we have tried to mimic a diagenetic process by constantly heating for ten days at 100°C fresh nacre powder samples of the Polynesian pearl oyster Pinctadamargaritifera. Each day, aliquots of nacre powder were sampled and the matrix was subsequently extracted. It was further analysed by direct weigh quantification, by immunological techniques and by proteomics. Our preliminary data suggest that nacre proteins, when heated at 100°C in dry condition, degrade rather slowly. We evidenced a differential degradation pattern of the soluble and insoluble fractions, and showed that some nacre proteins of the insoluble fraction are stable after ten days of heating. Factors that influence the diagenetic stability of some shell proteins are discussed.


Author(s):  
W.W. Adams ◽  
S. J. Krause

Rigid-rod polymers such as PBO, poly(paraphenylene benzobisoxazole), Figure 1a, are now in commercial development for use as high-performance fibers and for reinforcement at the molecular level in molecular composites. Spinning of liquid crystalline polyphosphoric acid solutions of PBO, followed by washing, drying, and tension heat treatment produces fibers which have the following properties: density of 1.59 g/cm3; tensile strength of 820 kpsi; tensile modulus of 52 Mpsi; compressive strength of 50 kpsi; they are electrically insulating; they do not absorb moisture; and they are insensitive to radiation, including ultraviolet. Since the chain modulus of PBO is estimated to be 730 GPa, the high stiffness also affords the opportunity to reinforce a flexible coil polymer at the molecular level, in analogy to a chopped fiber reinforced composite. The objectives of the molecular composite concept are to eliminate the thermal expansion coefficient mismatch between the fiber and the matrix, as occurs in conventional composites, to eliminate the interface between the fiber and the matrix, and, hopefully, to obtain synergistic effects from the exceptional stiffness of the rigid-rod molecule. These expectations have been confirmed in the case of blending rigid-rod PBZT, poly(paraphenylene benzobisthiazole), Figure 1b, with stiff-chain ABPBI, poly 2,5(6) benzimidazole, Fig. 1c A film with 30% PBZT/70% ABPBI had tensile strength 190 kpsi and tensile modulus of 13 Mpsi when solution spun from a 3% methane sulfonic acid solution into a film. The modulus, as predicted by rule of mixtures, for a film with this composition and with planar isotropic orientation, should be 16 Mpsi. The experimental value is 80% of the theoretical value indicating that the concept of a molecular composite is valid.


Genetics ◽  
2004 ◽  
Vol 166 (2) ◽  
pp. 883-894
Author(s):  
Liqin Cao ◽  
Ellen Kenchington ◽  
Eleftherios Zouros

Abstract In Mytilus, females carry predominantly maternal mitochondrial DNA (mtDNA) but males carry maternal mtDNA in their somatic tissues and paternal mtDNA in their gonads. This phenomenon, known as doubly uniparental inheritance (DUI) of mtDNA, presents a major departure from the uniparental transmission of organelle genomes. Eggs of Mytilus edulis from females that produce exclusively daughters and from females that produce mostly sons were fertilized with sperm stained with MitoTracker Green FM, allowing observation of sperm mitochondria in the embryo by epifluorescent and confocal microscopy. In embryos from females that produce only daughters, sperm mitochondria are randomly dispersed among blastomeres. In embryos from females that produce mostly sons, sperm mitochondria tend to aggregate and end up in one blastomere in the two- and four-cell stages. We postulate that the aggregate eventually ends up in the first germ cells, thus accounting for the presence of paternal mtDNA in the male gonad. This is the first evidence for different behaviors of sperm mitochondria in developing embryos that may explain the tight linkage between gender and inheritance of paternal mitochondrial DNA in species with DUI.


Molecules ◽  
2021 ◽  
Vol 26 (14) ◽  
pp. 4357
Author(s):  
Waritda Pookmanee ◽  
Siriwan Thongthip ◽  
Jeeranut Tankanitlert ◽  
Mathirut Mungthin ◽  
Chonlaphat Sukasem ◽  
...  

The method for the determination of primaquine (PQ) and 5,6-orthoquinone primaquine (5,6-PQ), the representative marker for PQ active metabolites, via CYP2D6 in human plasma and urine has been validated. All samples were extracted using acetonitrile for protein precipitation and analyzed using the ultra-high-performance liquid chromatography–tandem mass spectrometry (UHPLC-MS/MS) system. Chromatography separation was carried out using a Hypersil GOLDTM aQ C18 column (100 × 2.1 mm, particle size 1.9 μm) with a C18 guard column (4 × 3 mm) flowed with an isocratic mode of methanol, water, and acetonitrile in an optimal ratio at 0.4 mL/min. The retention times of 5,6-PQ and PQ in plasma and urine were 0.8 and 1.6 min, respectively. The method was validated according to the guideline. The linearity of the analytes was in the range of 25–1500 ng/mL. The matrix effect of PQ and 5,6-PQ ranged from 100% to 116% and from 87% to 104% for plasma, and from 87% to 89% and from 86% to 87% for urine, respectively. The recovery of PQ and 5,6-PQ ranged from 78% to 95% and form 80% to 98% for plasma, and from 102% to from 112% to 97% to 109% for urine, respectively. The accuracy and precision of PQ and 5,6-PQ in plasma and urine were within the acceptance criteria. The samples should be kept in the freezer (−80 °C) and analyzed within 7 days due to the metabolite stability. This validated UHPLC-MS/MS method was beneficial for a pharmacokinetic study in subjects receiving PQ.


2021 ◽  
Vol 167 ◽  
pp. 112295
Author(s):  
Amina Khalid ◽  
Aurore Zalouk-Vergnoux ◽  
Samira Benali ◽  
Rosica Mincheva ◽  
Jean-Marie Raquez ◽  
...  
Keyword(s):  

Author(s):  
Maria Rincon Nigro ◽  
Jing Ma ◽  
Ololade Tosin Awosemo ◽  
Huan Xie ◽  
Omonike Arike Olaleye ◽  
...  

OJT007 is a methionine aminopeptidase 1 (MetAP1) inhibitor with potent anti-proliferative effects against Leishmania Major. In order to study its pharmacokinetics as a part of the drug development process, a sensitive, specific, and reproducible ultra-high performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS) method was developed and validated. Voriconazole was used as the internal standard to generate standard curves ranging from 5 to 1000 ng/mL. The separation was achieved using a UPLC system equipped with an Acquity UPLC BEH C18 column (2.1 × 50 mm, 1.7 μm) with 0.1% formic acid in acetonitrile and 0.1% formic acid in water as the mobile phase under gradient elution at a flow rate of 0.4 mL/min. The mass analysis was performed with a 4000 QTRAP® mass spectrometer using multiple-ion reaction monitoring (MRM) in the positive mode, with the transition of m/z 325 → m/z 205 for OJT007 and m/z 350 → m/z 101 for voriconazole. The intra- and inter-day precision and accuracy were within ±15%. The mean extraction recovery and the matrix effect were 95.1% and 7.96%, respectively, suggesting no significant matrix interfering with the quantification of the drug in rat plasma. This study was successfully used for the pharmacokinetic evaluation of OJT007 using the rat as an animal model.


Sign in / Sign up

Export Citation Format

Share Document