Thermal Stability of Nacre Proteins of the Polynesian Pearl Oyster: A Proteomic Study

2016 ◽  
Vol 672 ◽  
pp. 222-231 ◽  
Author(s):  
Alexandre Parker ◽  
Françoise Immel ◽  
Nathalie Guichard ◽  
Cédric Broussard ◽  
Frédéric Marin

Mollusc shells are organic-inorganic composites that are often preserved in the fossil record. However, the way the organic fraction, also called shell matrix, gets fossilized remains an unsolved question, in spite of several old and more recent studies. In the present paper, we have tried to mimic a diagenetic process by constantly heating for ten days at 100°C fresh nacre powder samples of the Polynesian pearl oyster Pinctadamargaritifera. Each day, aliquots of nacre powder were sampled and the matrix was subsequently extracted. It was further analysed by direct weigh quantification, by immunological techniques and by proteomics. Our preliminary data suggest that nacre proteins, when heated at 100°C in dry condition, degrade rather slowly. We evidenced a differential degradation pattern of the soluble and insoluble fractions, and showed that some nacre proteins of the insoluble fraction are stable after ten days of heating. Factors that influence the diagenetic stability of some shell proteins are discussed.

1991 ◽  
Vol 255 ◽  
Author(s):  
J. A. Keith ◽  
S. A. Stockwell ◽  
D. H. Ball ◽  
W. S. Muller ◽  
D. L. Kaplan ◽  
...  

AbstractThe macromolecular matrix present in the composite shell of the blue mussel, Mytilus edulis, accounts for less than 1% of the shell by weight but is theorized to play a significant role in controlling the growth, morphology, and orientation of the CaCO3 that makes up the shell. The presence of several proteins in this matrix, only some of which have affinity for calcium, suggests a hierarchical structural model for the shell. Proteins were isolated under denaturing, reducing conditions and separated by centrifugation, gel electrophoresis, and high performance liquid chromatography. The major matrix proteins, both soluble and insoluble, were evaluated for amino acid composition, calcium binding, and glycosylation. Some N-terminal sequence data was collected. Non-proteinaceous components of the matrix were also analyzed. Comparison of the mussel shell matrix with the protein matrix of other molluscan systems suggests that this complexity is not unique to the mussel and may provide a key to the understanding of more generic biomineralization processes necessary for such applications as biomimetic ceramics.


2017 ◽  
Vol 14 (126) ◽  
pp. 20160846 ◽  
Author(s):  
Benjamin Marie ◽  
Jaison Arivalagan ◽  
Lucrèce Mathéron ◽  
Gérard Bolbach ◽  
Sophie Berland ◽  
...  

The formation of the molluscan shell nacre is regulated to a large extent by a matrix of extracellular macromolecules that are secreted by the shell-forming tissue, the mantle. This so-called ‘calcifying matrix’ is a complex mixture of proteins, glycoproteins and polysaccharides that is assembled and occluded within the mineral phase during the calcification process. Better molecular-level characterization of the substances that regulate nacre formation is still required. Notable advances in expressed tag sequencing of freshwater mussels, such as Elliptio complanata and Villosa lienosa , provide a pre-requisite to further characterize bivalve nacre proteins by a proteomic approach. In this study, we have identified a total of 48 different proteins from the insoluble matrices of the nacre, 31 of which are common to both E. complanata and V. lienosa . A few of these proteins, such as PIF, MSI60, CA, shematrin-like, Kunitz-like, LamG, chitin-binding-containing proteins, together with A-, D-, G-, M- and Q-rich proteins, appear to be analogues, if not true homologues, of proteins previously described from the pearl oyster or the edible mussel nacre matrices, thus forming a remarkable list of deeply conserved nacre proteins. This work constitutes a comprehensive nacre proteomic study of non-pteriomorphid bivalves that has enabled us to describe the molecular basis of a deeply conserved biomineralization toolkit among nacreous shell-bearing bivalves, with regard to proteins associated with other shell microstructures, with those of other mollusc classes (gastropods, cephalopods) and, finally, with other lophotrochozoans (brachiopods).


2020 ◽  
Author(s):  
Davin H. E. Setiamarga ◽  
Kazuki Hirota ◽  
Masa-aki Yoshida ◽  
Yusuke Takeda ◽  
Keiji Kito ◽  
...  

AbstractDespite being a member of the shelled mollusks (Conchiferans), most members of extant cephalopods have lost their external biomineralized shells, except for the Nautiloids. Here, we report the result of our study to identify major Shell Matrix Proteins and their domains in the Nautiloid Nautilus pompilius, in order to gain a general insight into the evolution of Conchiferan Shell Matrix Proteins. In order to do so, we conducted transcriptomics of the mantle, and proteomics of the shell of N. pompilius simultaneously. Analyses of obtained data identified 61 distinct shell-specific sequences. Of the successfully annotated 27 sequences, protein domains were predicted in 19. Comparative analysis of Nautilus sequences with four Conchiferans for which Shell Matrix Protein data were available (the pacific oyster, the pearl oyster, the limpet, and the Euhadra snail) revealed that three proteins and six domains of the shell proteins are conserved in all Conchiferans. Interestingly, when the terrestrial Euhadra snail was excluded, another five proteins and six domains were found to be shared among the four marine Conchiferans. Phylogenetic analyses indicated that most of these proteins and domains were present in the ancestral Conchiferan, but employed in shell formation later and independently in most clades. Although further studies utilizing deeper sequencing techniques to obtain genome and full-length sequences, and functional analyses, must be done in the future, our results here provide important pieces of information for the elucidation of the evolution of Conchiferan shells at the molecular level.


2017 ◽  
Vol 11 (2) ◽  
pp. 158-165 ◽  
Author(s):  
Galyna Khovanets’ ◽  
◽  
Оlena Makido ◽  
Viktoria Kochubei ◽  
Тetyana Sezonenko ◽  
...  

2019 ◽  
Vol 8 (1) ◽  
pp. 619-627 ◽  
Author(s):  
Shaolin Li ◽  
Xiuhua Guo ◽  
Shengli Zhang ◽  
Jiang Feng ◽  
Kexing Song ◽  
...  

AbstractArc erosion behaviors of TiB2/Cu composites with single-scale and dual-scale TiB2 particles fabricated by powder metallurgy were studied. It was revealed that the dual-scale TiB2/Cu composites had fewer structure defects compared with the single-scale TiB2/Cu composites, and TiB2 particles with different size were uniformly distributed in the copper matrix. When the ratio of 2 μm over 50 μm TiB2 particles is 1:2, the density of TiB2/Cu composite is 98.5% and shows best mechanical and thermal properties. The arc duration and energy of TiB2/Cu composites increase with the increase of electric current in contact material testing. Compared with the single-scale TiB2/Cu composites, the arc erosion of dual-scale TiB2/Cu composite with 2 μm+50 μm (1:2) TiB2 was slighter. The anode bulge area and cathode erosion pit of dual-scale TiB2/Cu composite was smaller. The dual-scale TiB2 particles optimize the microstructure and thermal stability of the composite, which is conducive to alleviating arc erosion. The synergistic effect of different sized TiB2 particles in the matrix improved the arc erosion resistance of TiB2/Cu composite during arcing.


1998 ◽  
Vol 111 (11) ◽  
pp. 1545-1554 ◽  
Author(s):  
A.W. Koch ◽  
T.W. Holstein ◽  
C. Mala ◽  
E. Kurz ◽  
J. Engel ◽  
...  

Here we present the cloning, expression and immunocytochemical localization of a novel 24 kDa protein, designated spinalin, which is present in the spines and operculum of Hydra nematocysts. Spinalin cDNA clones were identified by in situ hybridization to differentiating nematocytes. Sequencing of a full-length clone revealed the presence of an N-terminal signal peptide, suggesting that the mature protein is sorted via the endoplasmic reticulum to the post-Golgi vacuole in which the nematocyst is formed. The N-terminal region of spinalin (154 residues) is very rich in glycines (48 residues) and histidines (33 residues). A central region of 35 residues contains 19 glycines, occurring mainly as pairs. For both regions a polyglycine-like structure is likely and this may be stabilized by hydrogen bond-mediated chain association. Similar sequences found in loricrins, cytokeratins and avian keratins are postulated to participate in formation of supramolecular structures. Spinalin is terminated by a basic region (6 lysines out of 15 residues) and an acidic region (9 glutamates and 9 aspartates out of 32 residues). Western blot analysis with a polyclonal antibody generated against a recombinant 19 kDa fragment of spinalin showed that spinalin is localized in nematocysts. Following dissociation of the nematocyst's capsule wall with DTT, spinalin was found in the insoluble fraction containing spines and the operculum. Immunocytochemical analysis of developing nematocysts revealed that spinalin first appears in the matrix but then is transferred through the capsule wall at the end of morphogenesis to form spines on the external surface of the inverted tubule and the operculum.


2003 ◽  
Vol 3 ◽  
pp. 342-347 ◽  
Author(s):  
Frederic Marin

The glycoproteinaceous constituents of molluscan shell matrices usually resist chromatographical fractionation. We describe a protocol that overcomes this difficulty and permits collection of a large amount of shell proteins for further in vitro characterization. After dissolution of the mineral phase, the glycoproteins are fractionated �blind� on a preparative electrophoresis. They are subsequently detected with a polyclonal antibody raised against the whole matrix.


PeerJ ◽  
2019 ◽  
Vol 7 ◽  
pp. e7212
Author(s):  
Crisalejandra Rivera-Perez ◽  
Catalina Magallanes-Dominguez ◽  
Rosa Virginia Dominguez-Beltran ◽  
Josafat Jehu Ojeda-Ramirez de Areyano ◽  
Norma Y. Hernandez-Saavedra

Mollusk shell mineralization is a tightly controlled process made by shell matrix proteins (SMPs). However, the study of SMPs has been limited to a few model species. In this study, the N66 mRNA of the pearl oysterPinctada mazatlanicawas cloned and functionally characterized. The full sequence of the N66 mRNA comprises 1,766 base pairs, and encodes one N66 protein. A sequence analysis revealed that N66 contained two carbonic anhydrase (CA) domains, a NG domain and several glycosylation sites. The sequence showed similarity to the CA VII but also with its homolog protein nacrein. The native N66 protein was isolated from the shell and identified by mass spectrometry, the peptide sequence matched to the nucleotide sequence obtained. Native N66 is a glycoprotein with a molecular mass of 60–66 kDa which displays CA activity and calcium carbonate precipitation ability in presence of different salts. Also, a recombinant form of N66 was produced inEscherichia coli, and functionally characterized. The recombinant N66 displayed higher CA activity and crystallization capability than the native N66, suggesting that the lack of posttranslational modifications in the recombinant N66 might modulate its activity.


2013 ◽  
Vol 469 ◽  
pp. 171-174 ◽  
Author(s):  
Ning Zhang ◽  
Si Yao Sui ◽  
Zhe Wang ◽  
Zhong Su Ma

Edible films were prepared using soy protein isolate (4g/100g), oleic acid (0-2g/100g) and stearic acid (0-2g/100g). Effects of the type and ratio of fatty acids (oleic acid and stearic acid) on the thermal properties of soybean protein isolate-based films were investigated. The results indicated that the addition of oleic acid and stearic acid take a significant effect on the thermal stability of soybean protein isolate-based films, as may attribute to that oleic acid is an amphiphilic substance that interacts with both polar and hydrophobic sites on proteins, thus it could improve the functional properties of the films. Besides, the solid state and hydrophobic nature of stearic acid could help limit water diffusion in the matrix more efficiently when it is well-integrated in the matrix through the surfactant action of oleic acid.


Sign in / Sign up

Export Citation Format

Share Document