A High Speed Contact-Type Image Sensor using Amorphous Silicon Alloy Pin Diodes

1992 ◽  
Vol 258 ◽  
Author(s):  
K. Kitamura ◽  
H. Mimura ◽  
K. Tsukada ◽  
T. Nakayama ◽  
M. Yamaguchi ◽  
...  

ABSTRACTA new A4-size contact-type image sensor with 8 elements per millimeter (1,728 elements) was developed by using amorphous silicon alloy pin photodiodes as the light receiving elements. The matrix switching method is employed for signal reading. This method can read the signals from all of the 1,728 photodiodes using a 54 (54-channel input) x 32 (32.channel output) matrix switching scheme. It is advantageous in that the required input and output external circuits can be simplified. To prevent signal crosstalk between the diodes in the matrix, amorphous silicon alloy pin diodes, which are made in the same process as the photodiodes for maintaining a low cost, are connected in series to each photodiode in reverse polarity as blocking diodes.To achieve superior signal-to-noise ratio and response at the same time, amorphous silicon alloy pin diodes are optimized to satisfy both a high photo-to-dark ratio and a high rectification ratio. The image sensor can operate at up to 2 MHz signal reading clock, maintaining a signal-to-noise ratio of over 24 dB under 0. 1–1x sec exposure.

2020 ◽  
Vol 2020 (7) ◽  
pp. 143-1-143-6 ◽  
Author(s):  
Yasuyuki Fujihara ◽  
Maasa Murata ◽  
Shota Nakayama ◽  
Rihito Kuroda ◽  
Shigetoshi Sugawa

This paper presents a prototype linear response single exposure CMOS image sensor with two-stage lateral overflow integration trench capacitors (LOFITreCs) exhibiting over 120dB dynamic range with 11.4Me- full well capacity (FWC) and maximum signal-to-noise ratio (SNR) of 70dB. The measured SNR at all switching points were over 35dB thanks to the proposed two-stage LOFITreCs.


2001 ◽  
Vol 685 ◽  
Author(s):  
M. Fernandes ◽  
Yu. Vygranenko ◽  
J. Martins ◽  
M. Vieira

AbstractWe suggest to enhance the performance of image acquisition systems based on large area amorphous silicon based sensors by optimizing the readout parameters such as the intensity and cross-section of scanner beam, acquisition time and bias conditions. The main output device characteristics as image responsivity, signal to noise ratio and spatial resolution were analyzed in open circuit, short circuit and photodiode modes. The result show that the highest signal to noise ratio and best dark to bright ratio can be achieved in short circuit mode.It was shown that the sensor resolution is related to the basic device parameters and, in practice, limited by the acquisition time and scanning beam properties. The scanning beam spot size limits the resolution due to the overlapping of dark and illuminated zones leading to a blurring effect on the final image and a consequent degradation in the resolution.


2021 ◽  
Vol 15 ◽  
Author(s):  
Thanet Pakpuwadon ◽  
Kiyotaka Sasagawa ◽  
Mark Christian Guinto ◽  
Yasumi Ohta ◽  
Makito Haruta ◽  
...  

In this study, we propose a complementary-metal-oxide-semiconductor (CMOS) image sensor with a self-resetting system demonstrating a high signal-to-noise ratio (SNR) to detect small intrinsic signals such as a hemodynamic reaction or neural activity in a mouse brain. The photodiode structure was modified from N-well/P-sub to P+/N-well/P-sub to increase the photodiode capacitance to reduce the number of self-resets required to decrease the unstable stage. Moreover, our new relay board was used for the first time. As a result, an effective SNR of over 70 dB was achieved within the same pixel size and fill factor. The unstable state was drastically reduced. Thus, we will be able to detect neural activity. With its compact size, this device has significant potential to become an intrinsic signal detector in freely moving animals. We also demonstrated in vivo imaging with image processing by removing additional noise from the self-reset operation.


1987 ◽  
Vol 95 ◽  
Author(s):  
L. Swartz ◽  
K. Kitamura ◽  
M. Vijan ◽  
J. McGill ◽  
V. Cannella ◽  
...  

AbstractWe report the development of a very high speed high resolution contact line imager using amorphous silicon alloy PIN diodes both as photosensing elements and as isolation diodes in the multiplexing scheme. High speed is achieved by reading the integrated photocurrent in 8μsec and using current integration times less than Imsec. For 200 dots/inch, the scan speed at an illumination of 5×10−4W/cm2 is over 1000 lines/sec. This allows the reading of an A4 (8½″×11″) page in less than 2.0 sec. At this light level, the signal to noise ratio is greater than 40dB. The photosensor array can be used in the true direct contact mode and the multiplexed addressing scheme gives a substantial reduction in the number of peripheral IC chips necessary for operation.


Author(s):  
David A. Grano ◽  
Kenneth H. Downing

The retrieval of high-resolution information from images of biological crystals depends, in part, on the use of the correct photographic emulsion. We have been investigating the information transfer properties of twelve emulsions with a view toward 1) characterizing the emulsions by a few, measurable quantities, and 2) identifying the “best” emulsion of those we have studied for use in any given experimental situation. Because our interests lie in the examination of crystalline specimens, we've chosen to evaluate an emulsion's signal-to-noise ratio (SNR) as a function of spatial frequency and use this as our critereon for determining the best emulsion.The signal-to-noise ratio in frequency space depends on several factors. First, the signal depends on the speed of the emulsion and its modulation transfer function (MTF). By procedures outlined in, MTF's have been found for all the emulsions tested and can be fit by an analytic expression 1/(1+(S/S0)2). Figure 1 shows the experimental data and fitted curve for an emulsion with a better than average MTF. A single parameter, the spatial frequency at which the transfer falls to 50% (S0), characterizes this curve.


Author(s):  
W. Kunath ◽  
K. Weiss ◽  
E. Zeitler

Bright-field images taken with axial illumination show spurious high contrast patterns which obscure details smaller than 15 ° Hollow-cone illumination (HCI), however, reduces this disturbing granulation by statistical superposition and thus improves the signal-to-noise ratio. In this presentation we report on experiments aimed at selecting the proper amount of tilt and defocus for improvement of the signal-to-noise ratio by means of direct observation of the electron images on a TV monitor.Hollow-cone illumination is implemented in our microscope (single field condenser objective, Cs = .5 mm) by an electronic system which rotates the tilted beam about the optic axis. At low rates of revolution (one turn per second or so) a circular motion of the usual granulation in the image of a carbon support film can be observed on the TV monitor. The size of the granular structures and the radius of their orbits depend on both the conical tilt and defocus.


Author(s):  
D. C. Joy ◽  
R. D. Bunn

The information available from an SEM image is limited both by the inherent signal to noise ratio that characterizes the image and as a result of the transformations that it may undergo as it is passed through the amplifying circuits of the instrument. In applications such as Critical Dimension Metrology it is necessary to be able to quantify these limitations in order to be able to assess the likely precision of any measurement made with the microscope.The information capacity of an SEM signal, defined as the minimum number of bits needed to encode the output signal, depends on the signal to noise ratio of the image - which in turn depends on the probe size and source brightness and acquisition time per pixel - and on the efficiency of the specimen in producing the signal that is being observed. A detailed analysis of the secondary electron case shows that the information capacity C (bits/pixel) of the SEM signal channel could be written as :


Sign in / Sign up

Export Citation Format

Share Document