Microstructure and Dangling Bond Defects in Amorphous Hydrogenated Silicon Deposited Near Room Temperature

1992 ◽  
Vol 258 ◽  
Author(s):  
Man Ken Cheung ◽  
Mark A. Petrich

ABSTRACTThe microstructure of high-density amorphous hydrogenated silicon (a-S.i:H) films deposited at 50°C substrate temperature was revealed by infrared (IR) and nuclear magnetic resonance (NMR) spectroscopies to be similar to that of “device-quality” a-Si:H films deposited at standard “optimum” conditions. However, optical absorption measurements of these low microstructure 50°C films with photothermal deflection spectroscopy indicate that they have higher densities of gap state defects and localized band tail states than “device-quality” films deposited at standard substrate temperatures. The correlation between the amount of microstructure and electronic properties is not unique. A low amount of microstructure is a necessary, but not sufficient, requirement for high electronic quality a-Si:H films.

1990 ◽  
Vol 192 ◽  
Author(s):  
S. Q. Gu ◽  
P. C. Taylor

Photoluminescence excitation (PLE) spectra at 77 K have been measured over the range 1.201.75 eV using the Ti sapphire cw tunable laser as the excitation source. Two undoped a-Si:H samples on rough substrates have been investigated. The first sample has a very high dangling bond (DB) density; the second one has low DB density. The PLE spectrum of photoluminescence (PL) at 0.8 eV for the first sample follows the shape of the absorption spectrum measured by photothermal deflection spectroscopy (PDS) at room temperature. This behavior can be understood within the context of the existing models as due to recombination through defects which produces PL centered around 0.8 eV. However the PLE spectrum of PL at 0.8 eV for the second sample drops very rapidly with decreasing energy for energies less than about 1.3 eV. This behavior, which differs dramatically from that of the absorption spectrum, is consistent with earlier results and suggests that the PL measured at 0.8 eV for the second sample may be largely due to a contribution of the tail of the PL band which peaks near 1.3 eV. The PLE spectra for PL at 1.0 eV and 1.1 eV for the second sample approach the PLE spectrum previously obtained using the integrated PL intensities.


1987 ◽  
Vol 95 ◽  
Author(s):  
M. S. Bennett ◽  
S. Wiedeman ◽  
J. L. Newton ◽  
K. Rajan

AbstractAbsorption measurements of as deposited and photodegraded intrinsic amorphous hydrogenated silicon films were made using photothermal deflection spectroscopy (PDS). The films were light-soaked in situ using HeNe laser light to simulate AM1 illumination. An increase in subbandgap absorption occurred predominantly near energies of 1.2eV. A simple model was developed in which a density of states function is hypothesized and the resulting optical absorption at subgap energies is calculated. The measured absorption could be well matched in all cases by assuming a single peak of defect states at or slightly below the Fermi level. Further, the observed changes in optical absorption due to degradation could be modeled by increasing the density of the single peak of defect states and moving the Fermi level towards the valence band.


1992 ◽  
Vol 283 ◽  
Author(s):  
S. Q. Gu ◽  
J. M. Viner ◽  
P. C. Taylor ◽  
M. J. Williams ◽  
W. A. Turner ◽  
...  

ABSTRACTPhotoluminescence (PL) has been investigated in hydrogenated microcrystalline silicon (μc-Si:H) samples as a function of boron doping for films prepared by remote plasma enhanced chemical vapor deposition. When the dark conductivity a is below about 10-5 S/cm, the PL spectra exhibit a shape which is close to that of the so-called band tail PL in undoped hydrogenated amorphous silicon (a-Si:H) at 77 K. When a increases, the PL intensity decreases at 77 K. For samples with a on the order of 10-3 S/cm, the PL spectra show only a narrow, low energy PL band which peaks around 0.8–0.9 eV. In these samples, the PL at higher energy is essentially not observable. This trend is similar to that which occurs in doped a-Si:H. However, for higher doping levels (σ ∼ 1 S/cm) the PL in μc-Si:H, although very weak, exhibits a broad band which contains intensity at higher energies. The absorption spectra in these samples, as measured by photothermal deflection spectroscopy (PDS), show the same relationships with the corresponding PL spectra as do the PDS spectra in doped a-Si:H.


1998 ◽  
Vol 80 (1-4) ◽  
pp. 335-338 ◽  
Author(s):  
O.B Gusev ◽  
M.S Bresler ◽  
E.I Terukov ◽  
K.D Tsendin ◽  
I.N Yassievich

2004 ◽  
Vol 808 ◽  
Author(s):  
George T. Dalakos ◽  
Joel L. Plawsky ◽  
Peter D. Persans

ABSTRACTGlow discharge amorphous hydrogenated silicon (a-Si:H) prepared at near room temperature typically results in an inhomogeneous morphology that is undesirable for a number of thin film applications. The most commonly observed features of this include columnar morphology and surface roughness. This usually results from anodic deposition, where substrates are placed on the grounded electrode. We have discovered that placing substrates on the RF-powered electrode (referred to as cathodic deposition) offers a much wider processing range for homogenous growth than anodic growth. We have also found that the magnitude of the surface roughness and the bulk void fraction of both anodic and cathodic a-Si:H thin films processed at low-temperatures is proportional to ∼D/F, where D is the surface diffusivity and F, the adatom flux, though anodic and cathodic deposition affect these global parameters differently. Surface processes unique to cathodic deposition can enhance adatom surface diffusion, while diffusion during anodic deposition is fixed and cannot attain homogeneous growth at high adatom fluxes. Processing a-Si:H on the cathode, associated with enhanced adatom surface diffusion, allows for homogeneous growth even at high deposition rates that has benefits for a number of applications.


1997 ◽  
Vol 70 (2) ◽  
pp. 240-242 ◽  
Author(s):  
O. B. Gusev ◽  
A. N. Kuznetsov ◽  
E. I. Terukov ◽  
M. S. Bresler, ◽  
V. Kh. Kudoyarova ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document