Hole transport via dangling-bond states in amorphous hydrogenated silicon nitride

1999 ◽  
Vol 86 (3) ◽  
pp. 1548-1551 ◽  
Author(s):  
J. M. Shannon ◽  
B. A. Morgan
1992 ◽  
Vol 242 ◽  
Author(s):  
W. L. Warren ◽  
J. Kanicki ◽  
F. C. Rong ◽  
W. R. Buchwald ◽  
M. Harmatz

ABSTRACTThe creation mechanisms of Si and N dangling bond defect centers in amorphous hydrogenated silicon nitride thin films by ultra-violet (UV) illumination are investigated. The creation efficiency and density of Si centers in the N-rich films are independent of illumination temperature, strongly suggesting that the creation mechanism of the spins is electronic in nature, i.e., a charge transfer mechanism. However, our results suggest that the creation of the Si dangling bond in the Si-rich films are different. Last, we find that the creation of the N dangling-bond in N-rich films can be fit to a stretched exponential time dependence, which is characteristic of dispersive charge transport.


1992 ◽  
Vol 284 ◽  
Author(s):  
W. L. Warren ◽  
J. Kanicki ◽  
J. Robertson ◽  
E. H. Poindexte

ABSTRACTThe photocreation mechanisms and properties of nitrogen dangling bonds in amorphous hydrogenated silicon nitride (a-SiNx:H) thin films are investigated. We find that the creation kinetics are strongly dependent on the post-deposition anneal; this thermal process can be described by a simple exponential function which yields an activation energy of 0.8 eV. The compositional dependence of the nitrogen dangling bond center suggests that its energy level lies close to the valence band edge, in agreement with theoretical calculations. This energy level position can explain why a-SiNx:H films often become conducting following a high post-deposition anneal.


1996 ◽  
Vol 43 (9) ◽  
pp. 1592-1601 ◽  
Author(s):  
S.J. Bijlsma ◽  
H. van Kranenburg ◽  
K.J.B.M. Nieuwesteeg ◽  
M.G. Pitt ◽  
J.F. Verweij

1991 ◽  
Vol 219 ◽  
Author(s):  
R. Biswas ◽  
I. Kwon ◽  
C. M. Soukoulis

ABSTRACTThe mechanisms of the Staebler-Wronski effect are investigated by examining the stability of computer-generated amorphous hydrogenated silicon networks with a molecular dynamics approach. Models with both monohydride and dihydride species are examined. A new Si-H interatomic potential is utilized for the simulations. A localized excitation is used to model the non-radiative transfer of photo-excited carrier energy to the lattice. The a-Si:H model with only monohydride species is stable to bond-breaking excitations. The a-Si:H model with both monohydride and dihydride species is less stable and exhibits, after local excitations, higher energy dangling bond states that can however be easily annealed away.


Sign in / Sign up

Export Citation Format

Share Document