Gap state distribution in amorphous hydrogenated silicon carbide films deduced from photothermal deflection spectroscopy

2002 ◽  
Vol 91 (7) ◽  
pp. 4319-4325 ◽  
Author(s):  
K. Chew ◽  
Rusli ◽  
S. F. Yoon ◽  
J. Ahn ◽  
Q. Zhang ◽  
...  
1992 ◽  
Vol 258 ◽  
Author(s):  
Man Ken Cheung ◽  
Mark A. Petrich

ABSTRACTThe microstructure of high-density amorphous hydrogenated silicon (a-S.i:H) films deposited at 50°C substrate temperature was revealed by infrared (IR) and nuclear magnetic resonance (NMR) spectroscopies to be similar to that of “device-quality” a-Si:H films deposited at standard “optimum” conditions. However, optical absorption measurements of these low microstructure 50°C films with photothermal deflection spectroscopy indicate that they have higher densities of gap state defects and localized band tail states than “device-quality” films deposited at standard substrate temperatures. The correlation between the amount of microstructure and electronic properties is not unique. A low amount of microstructure is a necessary, but not sufficient, requirement for high electronic quality a-Si:H films.


1987 ◽  
Vol 95 ◽  
Author(s):  
M. S. Bennett ◽  
S. Wiedeman ◽  
J. L. Newton ◽  
K. Rajan

AbstractAbsorption measurements of as deposited and photodegraded intrinsic amorphous hydrogenated silicon films were made using photothermal deflection spectroscopy (PDS). The films were light-soaked in situ using HeNe laser light to simulate AM1 illumination. An increase in subbandgap absorption occurred predominantly near energies of 1.2eV. A simple model was developed in which a density of states function is hypothesized and the resulting optical absorption at subgap energies is calculated. The measured absorption could be well matched in all cases by assuming a single peak of defect states at or slightly below the Fermi level. Further, the observed changes in optical absorption due to degradation could be modeled by increasing the density of the single peak of defect states and moving the Fermi level towards the valence band.


1998 ◽  
Vol 1 (2) ◽  
pp. 81-85
Author(s):  
Clara EE Hanekamp ◽  
Hans JRM Bonnier ◽  
Rolf H Michels ◽  
Kathinka H Peels ◽  
Eric PCM Heijmen ◽  
...  

2003 ◽  
Vol 17 (09) ◽  
pp. 387-392 ◽  
Author(s):  
NIKIFOR RAKOV ◽  
ARSHAD MAHMOOD ◽  
MUFEI XIAO

Amorphous hydrogenated silicon carbide (a-SiC:H) thin films have been prepared by the RF reactive magnetron sputtering technique. The optical properties of the films have been studied by optical spectroscopy with an incoherent light source. The material is commonly regarded as a dielectric. We have discovered however that some films that were prepared under certain deposition conditions and on certain substrates may respond to external light as a metallic thin film, i.e. there are strongly enhanced reflection peaks in the optical spectrum. We have further discovered that some films may have a strong and broadened absorption peak at about 590 nm, which is an apparent photonic bandgap in the visible spectrum. The appearance of the photonic bandgap is very sensitive to two parameters: the substrate and the deposition gas. By changing the two parameters, one shifts the status of the film from with and without the photonic bandgap.


1994 ◽  
Vol 336 ◽  
Author(s):  
K. Gaughan ◽  
J.M. Viner ◽  
P.C. Taylor

ABSTRACTWe investigated the optical and electronic properties of amorphous silicon carbide (a-Si1−xCx:H) films produced by plasma enhanced chemical vapor deposition from admixtures of silane and ditertiarybutylsilane [SiH2 (C4H9) 2 or DTBS] using photothermal deflection spectroscopy, electrical conductivity and its temperature dependence as well as photoconductivity. These a-Si1−xCx:H films exhibit low Urbach energies and high photoconductivities similar to films produced with other carbon feedstock sources. We also present our results for hydrogen diluted a-Si1−xCx:H films using DTBS as the carbon feedstock source.


2009 ◽  
Vol 15 (1-3) ◽  
pp. 39-46 ◽  
Author(s):  
Aleksander M. Wrobel ◽  
Agnieszka Walkiewicz-Pietrzykowska ◽  
Marja Ahola ◽  
I. Juhani Vayrynen ◽  
Francisco J. Ferrer-Fernandez ◽  
...  

1993 ◽  
Vol 297 ◽  
Author(s):  
F. Demichelis ◽  
G. Crovini ◽  
C.F. Pirri ◽  
E. Tresso ◽  
R. Galloni ◽  
...  

Amorphous silicon carbide films have been deposited by PECVD in SiH4+CH4+H2 mixtures at different hydrogen dilutions. The optoelecuonic properties of the films have been measured by transmittance-reflectance spectroscopy, photothermal deflection spectroscopy and photo and dark electrical conductivity. Structural properties have been obtained by FTIR spectroscopy. It was found that high hydrogen dilution leads to materials of improved quality, p-i-n device structures have been deposited with intrinsic layers at different hydrogen dilution levels.


Sign in / Sign up

Export Citation Format

Share Document