Amorphization of PLZT Material by 1.5 MeV Krypton Ion Irradiation with In Situ TEM Observation

1992 ◽  
Vol 268 ◽  
Author(s):  
L.M. Wang ◽  
A.Y. Wu ◽  
R.C. Ewing

ABSTRACTPLZT 9/65/35 single crystals were irradiated with 1.5 MeV krypton ions at 25–450°C in the HVEM-Tandem Facility at Argonne National Laboratory. In-situ TEM was performed during irradiation in order to determine the critical amorphization dose. At room temperature, the material was completely amorphized after a dose of only 1.9×1014 ions/cm2, less than one fifth of the critical amorphization dose for silicon (1×1015 ions/cm2). The critical amorphization dose for the PLZT material increased with increasing irradiation temperature. At 450°C, amorphization was not observed after a dose of 1.1×10 15ions/cm2.

1988 ◽  
Vol 100 ◽  
Author(s):  
M. W. Bench ◽  
I. M. Robertson ◽  
M. A. Kirk

ABSTRACTTransmission electron microscopy experiments have been performed to investigate the lattice damage created by heavy-ion bombardments in GaAs. These experiments have been performed in situ by using the HVEN - Ion Accelerator Facility at Argonne National Laboratory. The ion bcorbardments (50 keV Ar+ and Kr+) and the microscopy have been carried out at temperatures rangrin from 30 to 300 K. Ion fluences ranged from 2 × 1011 to 5 × 1013 ions cm−2.Direct-inpact amorphization is observed to occur in both n-type and semi-insulating GaAs irradiated to low ion doses at 30 K and room temperature. The probability of forming a visible defect is higher for low temperature irradiations than for room temperature irradiations. The amorphous zones formed at low temperature are stable to temperatures above 250 K. Post implantation annealing is seen to occur at room temperature for all samples irradiated to low doses until eventually all visible damage disappears.


Author(s):  
R. C. Birtcher ◽  
L. M. Wang ◽  
C. W. Allen ◽  
R. C. Ewing

We present here results of in situ TEM diffraction observations of the response of U3Si and U3Si2 when subjected to 1 MeV electron irradiation or to 1.5 MeV Kr ion irradiation, and observations of damage occuring in natural zirconolite. High energy electron irradiation or energetic heavy ion irradiation were performed in situ at the HVEM-Tandem User Facility at Argonne National Laboratory. In this Facility, a 2 MV Tandem ion accelerator and a 0.6 MV ion implanter have been interfaced to a 1.2 MeV AEI high voltage electron microscope. This allows a wide variety of in situ experiments to be performed with simultaneous ion irradiation and conventional transmission electron microscopy. During the electron irradiation, the electron beam was focused to a diameter of about 2 μ.m at the specimen thin area. The ion beam was approximately 2 mm in diameter and was uniform over the entire specimen. With the specimen mounted in a heating holder, the temperature increase indicated by the furnace thermocouple during the ion irradiation was typically 8 °K.


Author(s):  
L.M. Wang ◽  
R.C. Birtcher

Although it was initially thought that irradiation could not further damage an amorphous material, an anomalous ion-induced morphological instability on the surface of amorphous Ge has been reported previously by several authors. In this study, the structural and morphological changes of Ge were monitored during 1.5 MeV Kr ion irradiation by in situ TEM to obtain insight into the damage evolution in ion-irradiated Ge.The in situ study was performed on the HVEM-Tandem Accelerator Facility at Argonne National Laboratory. The facility consists of a modified Kratos/AEI EM7 high voltage electron microscope (HVEM) and a 2 MV tandem ion accelerator. The samples were jet-polished polycrystalline Ge (99.99999 at. % pure) TEM discs with grain size > 5 μm in dimension. The Kr ion irradiation was carried out at room temperature, and the electron energy of the HVEM was 300 kV. According to a TRIM computer simulation, over 99% of the Kr ions penetrate through the electron transparent areas of the Ge sample, and a dose of 1×1015 Kr/cm2 created an average of ∽4 displacements per atom and an average Kr concentration of ∽12 appm in the observation region of the sample.


Author(s):  
Charles W. Allen ◽  
Robert C. Birtcher

The uranium silicides, including U3Si, are under study as candidate low enrichment nuclear fuels. Ion beam simulations of the in-reactor behavior of such materials are performed because a similar damage structure can be produced in hours by energetic heavy ions which requires years in actual reactor tests. This contribution treats one aspect of the microstructural behavior of U3Si under high energy electron irradiation and low dose energetic heavy ion irradiation and is based on in situ experiments, performed at the HVEM-Tandem User Facility at Argonne National Laboratory. This Facility interfaces a 2 MV Tandem ion accelerator and a 0.6 MV ion implanter to a 1.2 MeV AEI high voltage electron microscope, which allows a wide variety of in situ ion beam experiments to be performed with simultaneous irradiation and electron microscopy or diffraction.At elevated temperatures, U3Si exhibits the ordered AuCu3 structure. On cooling below 1058 K, the intermetallic transforms, evidently martensitically, to a body-centered tetragonal structure (alternatively, the structure may be described as face-centered tetragonal, which would be fcc except for a 1 pet tetragonal distortion). Mechanical twinning accompanies the transformation; however, diferences between electron diffraction patterns from twinned and non-twinned martensite plates could not be distinguished.


2008 ◽  
Vol 1122 ◽  
Author(s):  
Karl R. Whittle ◽  
Katherine L. Smith ◽  
Mark G. Blackford ◽  
Simon A.T. Redfern ◽  
Elizabeth J. Harvey ◽  
...  

AbstractSynthetic pyrochlore samples Y2Ti2-xSnxO7 (x=0.4, 0.8, 1.2, 1.6), Nd2Zr2O7, Nd2Zr1.2Ti0.8O7, and La1.6Y0.4Hf2O7, were irradiated in-situ using the IVEM-TANDEM microscope facility at the Argonne National Laboratory. The critical temperatures for amorphisation have revealed a dramatic increase in tolerance with increasing Sn content for the Y2Ti2-xSnxO7 series. This change has also found to be linear with increasing Sn content. Nd2Zr1.2Ti0.8O7 and La1.6Y0.4Hf2O7 were both found to amorphise, while Nd2Zr2O7 was found to be stable to high doses (2.5×10^15 ions cm-2). The observed results are presented with respect to previously published results for irradiation stability predictions and structural disorder.


1992 ◽  
Vol 279 ◽  
Author(s):  
A. T. Motta ◽  
L. M. Howe ◽  
P. R. Okamoto

ABSTRACTThin foils of Zircaloy-4 were irradiated with 350 KeV 40Ar ions in the dual ion beam/HVEM facility at Argonne National Laboratory at 300 – 650 K. The irradiation-induced araorphization of the intermetallic precipitates Zr (Cr, Fe)2 and Zr2 (Ni, Fe) was studied in situ. For Zr (Cr,Fe)2 precipitates the dose-to-amorphization was found to increase exponentially with temperature, with a critical temperature of about 650 K. The amorphization morphology was shown to be homogeneous, with no preferential site for nucleation, in contrast to neutron-irradiation amorphization which started at the precipitate-matrix interface. For Zr2 (Ni,Fe) precipitates it was found that amorphization occurred at 550 K and 600 K, whereas in neutron irradiation no amorphization has been observed at those temperatures. The results are discussed in the context of the previous experimental results of neutron and electron irradiation and likely amorphization mechanisms are proposed.


Author(s):  
L.F. Chen ◽  
L.M. Wang ◽  
R.C. Ewing

Irradiation-induced phase transformation in crystals has been an interesting research field for the past twenty years. Since the discovery of quasicrystals in Al-based alloys, there have been some reports on irradiation-induced phase transformation in quasicrystals by in situ TEM observations. However, detailed study on phase transformation in quasicrystals under ion irradiation at atomic level using HREM is necessary for the fundamental understanding of the process. In this paper, we report the results from a systematic HREM study on phase transformation induced by ion irradiation in Al-Cu-Co-Ge single decagonal quasicrystal (31.4 wt.% Cu, 21.8 wt.% Co and 5.4 wt.% Ge).The TEM specimens of single decagonal quasicrystal were prepared perpendicular to the tenfold axis. The transformation in single quasicrystal was studied by in situ TEM during 1.5 MeV Xe+ ion irradiation at room temperature using the HVEM-Tandem Facility at Argon National Laboratory and examined in detail by HREM using a JEM2010 microscope at the University of New Mexico after the irradiation.


1995 ◽  
Vol 396 ◽  
Author(s):  
Ning Yu ◽  
Jeremy N. Mitchell ◽  
Kurt E. Sickafus ◽  
Michael Nastasi

AbstractRadiation damage kinetics in synthetic MgTiO3 (geikielite) single crystals have been studied using the in situ ion beam facility at Los Alamos National Laboratory. The geikielite samples were irradiated at temperatures of 170, 300, and 470 K with 400 keV xenon ions and the radiation damage was sequentially measured with Rutherford backscattering using a 2 MeV He ion beam along a channeling direction. Threshold doses of 1 and 5×1015 Xe/cm2 were determined for the crystalline-to-amorphous transformation induced by Xe ion irradiation at 170 and 300 K, respectively. However, geikielite retained its crystallinity up to a dose of 2.5x1016 Xe/cm2 at the irradiation temperature of 470 K. This study has shown that MgTiO3, which has a corundum derivative structure, is another radiation resistant material that has the potential for use in radiation environments.


2014 ◽  
Vol 1712 ◽  
Author(s):  
Xiaoou. Yi ◽  
Michael L. Jenkins ◽  
Steve G. Roberts ◽  
Marquis A. Kirk

ABSTRACTIn our earlier work [1] microstructural evolution in tungsten under self-ion irradiation was investigated as a function of temperature and dose by in-situ 150 keV W+ ion irradiations on the IVEM-Tandem facility at Argonne National Laboratory (ANL). The present work focuses on the thermal stability of this damage. Thin foils of tungsten were irradiated at room temperature (R.T.) to fluences up to 1018 W+m-2 (∼ 1.0 dpa) and were then annealed in-situ for up to 120 min at temperatures between 300 and 800°C.We found that: (1) loops with Burgers vectors ½ <111> and <100> coexist during annealing; (2) <100> is not a stable loop configuration above 300°C and the fraction of such loops decreased with increasing temperature and/or time; (3) changes in loop populations during annealing were very sensitive to temperature, but less sensitive to time. The majority of changes occurred within 15 min, and were associated with the loss of small (1-2 nm) dislocation loops. The origin of these trends is discussed by considering defect mobility and the energetics of defect configurations predicted by previous DFT calculations [2].


1992 ◽  
Vol 279 ◽  
Author(s):  
William J. Weber ◽  
Lu-Min Wang

ABSTRACTSingle crystals of Ca2La8(SiO4)6O2 were irradiated with 1.5 MeV Xe+, 1.5 MeV Kr+, 1.0 MeV Ar+ and 0.8 MeV Ne+ ions to investigate the effects of recoil-energy spectrum, temperature, and crystallographic orientation on irradiation-induced amorphization. The irradiations were carried out using the HVEM-Tandem Facility at Argonne National Laboratory. The structural changes and the ion fluence for complete amorphization in the electron transparent thickness of the specimens were determined by in situ transmission electron microscopy. The displacement dose determined for complete amorphization was approximately 0.6 dpa for the Xe+, Kr+, and Ar+ ion irradiations but increased to 1.4 dpa for the Ne+ ion irradiations, which may reflect an effect of lower recoil energies. The ion fluence for complete amorphization increased exponentially with temperature over the range from 25 to 400°C. Amorphization was not observed at 500°C. The activation energy associated with this simultaneous annealing process was estimated to be 0.13 eV, and the critical amorphization temperature was estimated to be 438°C for the 1.5 MeV Kr+ irradiations.


Sign in / Sign up

Export Citation Format

Share Document