Large Scale Ion Beam Equipment and Processing - Review of Ammtra Project -

1993 ◽  
Vol 316 ◽  
Author(s):  
Koji Matsuda

An R&D project of large scale ion beam equipment and processing is being carried out from 1986 till 1994. The project includes R&D of five ion beam systems and three material processes for surface modification. The five equipment R&D projects are:(1)High current metal ion beam system,(2)Integrated high current ion beam system,(3)Ionized multiple beam system with high deposition rate,(4)High energy ion beam system,(5)Gas-phase focused ion beam system.The three materials processing R&D projects are:(1)Glass surface modification,(2)Metal surface modification,(3)Low scattering multilayer film deposition. This paper reviews recent progress on development of the project. This work was conducted in the program: ’Advanced Material Processing and Machining System’ consigned to AMMTRA from the New Energy and Industrial Technology Development Organization, which is carried out under the Industrial Science and Technology Frontier Program enforced by the Agency of Industrial Science and Technology of Japan.

Author(s):  
H. Inami ◽  
Y. Inouchi ◽  
H. Tanaka ◽  
T. Yamashita ◽  
K. Matsunaga ◽  
...  

1985 ◽  
Vol 51 ◽  
Author(s):  
K. L. More ◽  
R. F. Davis ◽  
B. R. Appleton ◽  
D. Lowndes ◽  
P. Smith

ABSTRACTPulsed laser annealing and ion beam mixing have been used as surface modification techniques to enhance the physical properties of polycrystalline α-SiC. Thin Ni overlayers (20 nm - 100 nm) were evaporated onto the SiC surface. The specimens were subsequently irradiated with pulses of a ruby or krypton fluoride (KrF) excimer laser or bombarded with high energy Xe+ or Si+ ions. Both processes are non-equilibrium methods and each has been shown to induce unique microstructural changes at the SiC surface which are not attainable by conventional thermal treatments. Under particular (and optimum) processing conditions, these changes considerably increased the mechanical properties of the SiC; following laser irradiation, the fracture strength of the SiC was increased by as much as 50%, but after ion beam mixing, no strength increase was observed.High resolution cross-section transmission electron microscopy (X-TEM), scanning electron microscopy (SEM), and Rutherford backscattering techniques were used to characterize the extent of mixing between the Ni and the SiC as a result of the surface modification.


MRS Bulletin ◽  
1988 ◽  
Vol 13 (12) ◽  
pp. 40-45 ◽  
Author(s):  
S.M. Rossnagel ◽  
J.J. Cuomo

Ion beam processing for thin film deposition is rapidly overtaking some of the more conventional plasma-based thin film processing techniques. This is due to strong improvements in the types and reliabilities of the sources available as well as a growing understanding of the advantages and capabilities of using ion beams.An ion beam process can be differentiated from a plasma-based process in that the plasma in an ion beam is generated away from the sample and a beam of ions is directed at the sample. In a plasma-based process, the sample is usually immersed in the plasma. This highlights the fundamental advantage of ion beam processing—control of the flux and energy of the ions incident on either a sample or a target (for sputter deposition). It is this control which is missing in plasma-based processing, where the ion flux (current), ion energy, chamber pressure, and gas species are all hopelessly intertwined. In addition, certain aspects of the ion bombardment—angle of incidence, complications of gas scattering, etc. —are essentially fixed in plasma-based processing, leaving no room to vary parameters, and in conjunction, film properties.A wealth of different types of ion sources cover a broad range of beam currents and energies. At the high energy end (0.1 – 20 MeV) are the implantation sources, typically used for doping semiconductors and treating surfaces (hardening, for example) and for various types of nuclear chemical analysis. These sources, however, tend to be very low current (μA). At slightly lower energies (tens of kilo-electron volts), but significantly higher currents (50 A), are the ion sources used for heating fusion plasmas.


1992 ◽  
Vol 65 (3) ◽  
pp. 687-696 ◽  
Author(s):  
Walter H. Waddell ◽  
Larry R. Evans ◽  
James G. Gillick ◽  
Derek Shuttleworth

Abstract Surface modification as a technology has been employed in various ways for many years, however, the breadth and magnitude of its applications have grown significantly during the last decade. Much of this growth has been facilitated by the development and spread of rapid and reliable surface characterization techniques. And, as would be expected of a maturing field, the bulk of investigations are now turning to applications rather than a pure understanding. Publications in both the scientific literature and patents describe research on a diverse range of polymeric substrates and potential applications using a wide range of modification techniques. Methods include chemical, photochemical, and high-energy physical techniques to modify polymer surfaces. Searches were made of these methods as applied to the surface modification of polymeric materials of particular interest to the rubber industry. Chemical methods include reactions such as halogenation, addition, etching, and oxidation. Photochemical techniques include surface reactions such as oxidative and nonoxidative degradation, halogenation, and photografting. Physical methods include corona discharge, plasma, electron and ion beam treatments. The 1980's literature on these subjects is published in a variety of languages, including a number of informative review articles and books printed in English on various aspects of this subject. The subject of this review concentrates on the surface modification of polymeric materials of particular interest to the rubber industry by focussing largely on scientific literature published in English and patent literature published during this time period that describe interesting and useful surface chemistry on elastomer substrates and rubber articles containing polymers such as natural rubber, cis-polyisoprene, styrene-butadiene copolymer, nitrile rubber, silicone, etc, and fibers and fabric made from fiber-forming polymer materials such as aramid, nylon, polyester, and carbon fiber, and those techniques reported successful in altering their surfaces. For organizational simplicity, three basic categories are used: elastomers, fibers and others. The latter category refers to those substrates without specific, current application in the rubber industry, but which have interesting or novel scientific features. Restriction of interest to rubber-relevant materials greatly reduced the scope of this work, and the interested reader should be aware that a great deal of activity is to be found in the rigid plastic and, to a lesser extent, biopolymer industries.


Sign in / Sign up

Export Citation Format

Share Document