Ion Beam Synthesis of Buried COXNi1-xSi2 Layers in Silicon

1993 ◽  
Vol 316 ◽  
Author(s):  
M.F. Wu ◽  
J. De Wachter ◽  
A.-M. Van Bavel ◽  
H. Pattyn ◽  
G. Langouche ◽  
...  

ABSTRACTHeteroepitaxial CoxNi1-xSi2 layers with good crystalline quality have been formed by ion beam synthesis. Rutherford Backscattering (RBS) - Channeling, Auger Electron Spectroscopy (AES), Transmission Electron Microscopy (TEM) and X-Ray Diffraction (XRD) have been used to study the buried layers. For a sample with x=0.66, we found that this ternary suicide layer contains 11% type B and 89 % type A orientation. The TEM investigation reveals that the type B component is mainly located at the interfaces with a thickness of a few monolayers. XRD studies show that the strain of the type B component is smaller than that of the type A component, and this is probably the reason for such a unique distribution of the type B component in the epilayer.

1993 ◽  
Vol 320 ◽  
Author(s):  
M.F. Wu ◽  
J. De Wachter ◽  
A.-M. Van Bavel ◽  
H. Pattyn ◽  
G. Langouche ◽  
...  

ABSTRACTHeteroepitaxial CoxNi1−xSi2 layers with good crystalline quality have been formed by ion beam synthesis. Rutherford Backscattering (RBS) - Channeling, Auger Electron Spectroscopy (AES), Transmission Electron Microscopy (TEM) and X-Ray Diffraction (XRD) have been used to study the buried layers. For a sample with x=0.66, we found that this ternary silicide layer contains 11% type B and 89% type A orientation. The TEM investigation reveals that the type B component is mainly located at the interfaces with a thickness of a few monolayers. XRD studies show that the strain of the type B component is smaller than that of the type A component, and this is probably the reason for such a unique distribution of the type B component in the epilayer.


1998 ◽  
Vol 514 ◽  
Author(s):  
M. F. Wu ◽  
A. Vantomne ◽  
S. Hogg ◽  
H. Pattyn ◽  
G. Langouche ◽  
...  

ABSTRACTThe Nd-disilicide, which exists only in a tetragonal or an orthorhombic structure, cannot be grown epitaxially on a Si(111) substrate. However, by adding Y and using channeled ion beam synthesis, hexagonal Nd0.32Y0.68Si1.7 epilayers with lattice constant of aepi = 0.3915 nm and cepi = 0.4152 nm and with good crystalline quality (χmin of Nd and Y is 3.5% and 4.3 % respectively) are formed in a Si(111) substrate. This shows that the addition of Y to the Nd-Si system forces the latter into a hexagonal structure. The epilayer is stable up to 950 °C; annealing at 1000 °C results in partial transformation into other phases. The formation, the structure and the thermal stability of this ternary silicide have been studied using Rutherford backscattering/channeling, x-ray diffraction and transmission electron microscopy.


1995 ◽  
Vol 396 ◽  
Author(s):  
J.K.N. Lindner ◽  
B. Götz ◽  
A. Frohnwieser ◽  
B. Stritzker

AbstractWell-defined, homogenous, deep-buried 3C-SiC layers have been formed in silicon by ion beam synthesis using MeV C+ ions. Layers are characterized by RBS/channeling, X-ray diffraction, x-sectional TEM and electron diffraction. The redistribution of implanted carbon atoms into a rectangular carbon depth distribution associated with a well-defined layer during the post-implantation anneal is shown to depend strongly on the existence of crystalline carbide precipitates in the as-implanted state.


2010 ◽  
Vol 63 ◽  
pp. 392-395
Author(s):  
Yoshifumi Aoi ◽  
Satoru Furuhata ◽  
Hiromi Nakano

ZrN/TiN multi-layers were synthesized by ion beam sputtering technique. Microstructure and mechanical property of the ZrN/TiN multi-layers were characterized and the relationships between microstructure and hardness of the ZrN/TiN multi-layers with various bilayer thicknesses and thickness ratios were investigated. The microstructure of multi-layers have been investigated using transmission electron microscope (TEM) and X-ray diffraction (XRD).


1994 ◽  
Vol 299 ◽  
Author(s):  
Gary A. Gibson ◽  
Davis A. Lange ◽  
Charles M. Falco

AbstractWe have used Molecular Beam Epitaxy (MBE) to successfully grow films that are predominantly IrSi3 on both Si(111) and Si(100) substrates by codeposition of Si and Ir in a 3:1 ratio. Bragg-Brentano and Seemann-Bohlin x-ray diffraction reveal that polycrystalline IrSi3 films form as low as 450 °C. This is the lowest temperature yet reported for growth of this iridium silicide phase. These x-ray diffraction techniques, along with Transmission Electron Microscope (TEM) diffraction and in situ Low Energy Electron Diffraction (LEED), show that at higher deposition temperatures codeposition can form IrSi3 films on Si(111) that consist predominantly of a single epitaxial growth orientation. Ion beam channeling and x-ray rocking curves show that the epitaxial quality of IrSi3 films deposited on Si(111) is superior to that of IrSi3 films deposited on Si(100). We also present evidence for several new epitaxial IrSi3 growth modes on Si(111) and Si(100).


2007 ◽  
Vol 561-565 ◽  
pp. 239-242 ◽  
Author(s):  
Kenji Niwa ◽  
Kenji Matsuda ◽  
Junya Nakamura ◽  
Tatsuo Sato ◽  
Susumu Ikeno

It is well known that Ag additional Al-1.0mass%Mg2Si-excess0.4mass%Si alloy (ex. Si-Ag alloy) has higher hardness and elongation than those of Al-1.0mass%Mg2Si-excess 0.4mass%Si alloy (ex. Si alloy). However, precipitation sequence of ex. Si-Ag alloy is not clear yet. In this work, precipitation sequence of ex. Si-Ag alloy has been investigated using high resolution transmission electron microscopy and X-ray energy dispersive spectroscopy. Precipitates were classified into several kinds by HRTEM images and SAED patterns, and relative frequencies of precipitates were also investigated. Its precipitation sequence was compared with that of ex. Si alloy. Type-A, Type-B and Type-C precipitates as special metastable phase in excess Si type Al-Mg-Si alloy, has been observed in ex. Si-Ag alloy, but β’ phase increased and Type-A and Type-B precipitate decreased in this study. Type-A precipitate was found at only grain boundary.


2014 ◽  
Vol 21 (1) ◽  
pp. 108-119 ◽  
Author(s):  
Daniela Nunes ◽  
Lídia Santos ◽  
Paulo Duarte ◽  
Ana Pimentel ◽  
Joana V. Pinto ◽  
...  

AbstractThe present work reports a simple and easy wet chemistry synthesis of cuprous oxide (Cu2O) nanospheres at room temperature without surfactants and using different precursors. Structural characterization was carried out by X-ray diffraction, transmission electron microscopy, and scanning electron microscopy coupled with focused ion beam and energy-dispersive X-ray spectroscopy. The optical band gaps were determined from diffuse reflectance spectroscopy. The photoluminescence behavior of the as-synthesized nanospheres showed significant differences depending on the precursors used. The Cu2O nanospheres were constituted by aggregates of nanocrystals, in which an on/off emission behavior of each individual nanocrystal was identified during transmission electron microscopy observations. The thermal behavior of the Cu2O nanospheres was investigated with in situ X-ray diffraction and differential scanning calorimetry experiments. Remarkable structural differences were observed for the nanospheres annealed in air, which turned into hollow spherical structures surrounded by outsized nanocrystals.


1986 ◽  
Vol 74 ◽  
Author(s):  
B. X. Liu ◽  
L. J. Huang ◽  
C. H. Shang

AbstractMultilayered Ni-Mo films were irradiated by 200keV Xe ions at room temperature to various doses. The beam current density was confined to be less than lμA/cm2 to avoid overheating. The experimental evidences from X-ray diffraction, electrical resistivity, as well 4 as Rutherford Backscattering, indicate that a dose of 7 × 1014/cm2 was the critical one for uniform mixing of the layers and amorphous phase formation in Ni65 Mo35 films. Under this critical dose, various dendritic patterns were formed as revealed by bright field transmission electron microscopy. The microscopic mechanisms of the ion induced dendritic growth are attributed to the cluster formation and the aggregation of the formed clusters.


Sign in / Sign up

Export Citation Format

Share Document