Deposition of Conductive Titanium Sub-Oxide Films by Reactive Ion-Beam Sputtering

1994 ◽  
Vol 337 ◽  
Author(s):  
K.G. Grigorov ◽  
A.H. Benhocine ◽  
D. Bouchier ◽  
F. Meyer

ABSTRACTTitanium monoxide films were deposited on silicon by reactive ion beam sputtering from a Ti target. The film composition was measured in situ by Auger electron spectrometry. It was observed that oxygen content in the deposit does not depend on the substrate temperature, up to 600 °C. Synthesized TiO films had a cubic structure with a lattice parameter of 4.17 Å, which confirmed that the O/Ti concentration ratio in the films was very close to the expected value. The films were found to be conductive, with a resistivity value equal to 170 μΩ cm. They had a yellowish metallic appearence and a very smooth surface. Sequences of annealings at increasing temperatures were performed under ultra-high-vacuum. No AES signal from silicon was observed up to a temperature of 700 °C.

2005 ◽  
Vol 25 (5-8) ◽  
pp. 752-755 ◽  
Author(s):  
E.H. Oubensaid ◽  
C. Maunoury ◽  
T. Devolder ◽  
N. Marsot ◽  
C. Schwebel

2000 ◽  
Vol 41 (1) ◽  
pp. 31-33
Author(s):  
Akiyoshi Chayahara ◽  
Atsushi Kinomura ◽  
Nobuteru Tsubouchi ◽  
Claire Heck ◽  
Yuji Horino

Author(s):  
J.E. Bonevich ◽  
J.P. Zhang ◽  
M. Jacoby ◽  
R. Ai ◽  
D. Dunn ◽  
...  

In order to examine surfaces of materials, a prerequisite is a microscope which combines ultra-high vacuum (UHV) with surface science cleaning and characterization techniques such as ion beam sputtering, annealing, and Auger spectroscopy. In order to achieve this, we have mounted onto the side of a UHV-H9000 microscope LEED/Auger, an ion gun, and optical heating; in the transfer chamber specimens can be cleaned at a base pressure of 2×10-10 torr and transferred into the microscope which operates at pressures better than 2×10-10 torr. With this marriage, it is relatively simple to prepare and characterize clean surfaces.As an example, thin gold film specimens, textured with the [111] normal to the film, were made in a standard vacuum evaporator and floated onto a gold grid. The transfer chamber was then baked-out at 250°C for about 12 hours to achieve UHV conditions. Figure 1 shows an image taken from the gold film after bakeout.


1992 ◽  
Vol 268 ◽  
Author(s):  
A.H. Benhocine ◽  
F. Meyer ◽  
M. Eizenberg ◽  
D. Bouchier ◽  
S. Kianfar

ABSTRACTWN films were deposited on clean Si substrates by Reactive Ion Beam Sputtering in a UHV system. The growth mode of the films as a function of the nitrogen ion energy was investigated by in situ Auger Electron Spectrometry. The energy of the incident ions was varied from 250 eV to 3 keV. We observed a significant nitridation of the silicon at the very beginning of the deposition. This nitridation is more pronounced for the lower energy and is more reduced for 2 keV-ions. It seems to follow the trend of the film composition: 250 eV-ions and 2 keV-ions result in N-rich films (N/W≈1) and W-rich films (N/W≈0.5), respectively. All these results are discussed in terms of sputtering yield, backscattering and sticking coefficient and are explained by taking into account: first, the interaction between the incident ions and the target, and second, the interaction between the species emitted by the target and the growing film.


1991 ◽  
Vol 236 ◽  
Author(s):  
R. Al ◽  
T. S. Savage ◽  
P. Xu ◽  
J. P. Zhang ◽  
L. D. Marks

AbstractThe microstructure evolution during preparation of thin Si(111) samples for surface sensitive imaging has been studied using ultra-high vacuum (UHV) transmission electron microscopy (TEM). The effects of ion beam sputtering and electron annealing have been investigated. A unique and routine sample preparation method for surface sensitive TEM imaging that combines TEM sample preparations with surface science sample preparation was developed. The microstructure evolution during the sample preparation process was studied in detail.


Author(s):  
J. S. Maa ◽  
Thos. E. Hutchinson

The growth of Ag films deposited on various substrate materials such as MoS2, mica, graphite, and MgO has been investigated extensively using the in situ electron microscopy technique. The three stages of film growth, namely, the nucleation, growth of islands followed by liquid-like coalescence have been observed in both the vacuum vapor deposited and ion beam sputtered thin films. The mechanisms of nucleation and growth of silver films formed by ion beam sputtering on the (111) plane of silicon comprise the subject of this paper. A novel mode of epitaxial growth is observed to that seen previously.The experimental arrangement for the present study is the same as previous experiments, and the preparation procedure for obtaining thin silicon substrate is presented in a separate paper.


2005 ◽  
Vol 875 ◽  
Author(s):  
A. Debelle ◽  
G. Abadias ◽  
A. Michel ◽  
C. Jaouen ◽  
Ph. Guérin ◽  
...  

AbstractEpitaxial Mo(110)/Ni(111) superlattices were grown on (1120) single-crystal sapphiresubstrates, by ion beam sputtering (IBS) and thermal evaporation (TE), in order to investigate the role of deposited energy on the interfacial mixing process observed in Mo sublayers. To separate intermixing and growth stress contributions, a careful and detailed characterization of the stress/strain state of both samples was performed by X-ray Diffraction (XRD). Non-equal biaxial coherency stresses are observed in both samples. For the IBS specimen, an additional source of stress, of hydrostatic type, due to growth-induced point defects, is present, resulting in a triaxial stress state. The use of ion irradiation to achieve a controlled stress relaxation can provide additional data and, as shown elsewhere, allows to obtain the stress-free lattice parameter a0 solely linked to chemical effects. For the TE sample, a standard biaxial analysis gives a0. In both samples, the a0 value is lower than the bulk lattice parameter, due to the presence of intermixed Mo(Ni) layers. However, the intermixing is larger in the sputtered Mo sublayers than in the thermal evaporated ones, putting forward the prime role of energy and/or momentum transfer occurring during energetic bombardment.


Sign in / Sign up

Export Citation Format

Share Document