Intrinsic stress and alloying effect in Mo/Ni superlattices: a comparison between ion beam sputtering and thermal evaporation

2005 ◽  
Vol 875 ◽  
Author(s):  
A. Debelle ◽  
G. Abadias ◽  
A. Michel ◽  
C. Jaouen ◽  
Ph. Guérin ◽  
...  

AbstractEpitaxial Mo(110)/Ni(111) superlattices were grown on (1120) single-crystal sapphiresubstrates, by ion beam sputtering (IBS) and thermal evaporation (TE), in order to investigate the role of deposited energy on the interfacial mixing process observed in Mo sublayers. To separate intermixing and growth stress contributions, a careful and detailed characterization of the stress/strain state of both samples was performed by X-ray Diffraction (XRD). Non-equal biaxial coherency stresses are observed in both samples. For the IBS specimen, an additional source of stress, of hydrostatic type, due to growth-induced point defects, is present, resulting in a triaxial stress state. The use of ion irradiation to achieve a controlled stress relaxation can provide additional data and, as shown elsewhere, allows to obtain the stress-free lattice parameter a0 solely linked to chemical effects. For the TE sample, a standard biaxial analysis gives a0. In both samples, the a0 value is lower than the bulk lattice parameter, due to the presence of intermixed Mo(Ni) layers. However, the intermixing is larger in the sputtered Mo sublayers than in the thermal evaporated ones, putting forward the prime role of energy and/or momentum transfer occurring during energetic bombardment.

2007 ◽  
Vol 264 ◽  
pp. 1-6 ◽  
Author(s):  
Gregory Abadias ◽  
Aurelien Debelle ◽  
Anny Michel ◽  
Christiane Jaouen

The stress state and intermixing in epitaxial Ni/Mo multilayers grown on (11 2 0) sapphire substrates are investigated using X-ray Diffraction (XRD). Two deposition techniques were used, namely ion beam sputtering (IBS) and magnetron sputtering (MS), to vary the energy of the deposited species. In both cases, high-quality superlattices with a Nishiyama-Wasserman epitaxial relationship Ni [110] (111) // Mo [001] (110) were obtained. The residual stress state appears rather complex, resulting from two contributions: a growth-stress whose magnitude and sign depend on growth conditions and coherency stresses of opposite signs in the two elemental sublayers (tensile for Ni and compressive for Mo). Post-growth ion irradiation at low fluences was used to induce structural changes in a controlled way. For the case of IBS, it resulted in partial stress relaxation, as the growth stress could be almost fully relaxed, while the coherency stresses remained unchanged. For the case of MS, a distinct behavior was found: a stress increase of the tensile component of Mo-sublayers was observed, while a stress reduction of the compressive component was noticed. We attribute this phenomenon to ion irradiation induced intermixing. For the Ni sublayers, this intermixing leads to a stress relaxation. The modeling of the stress evolution during ion irradiation was performed using a triaxial stress analysis which enabled us to determine the ‘stress-free and defect-free lattice parameter’, solely linked to chemical effect.


2003 ◽  
Vol 795 ◽  
Author(s):  
A. Debelle ◽  
G. Abadias ◽  
A. Michel ◽  
C. Jaouen ◽  
Ph. Guérin ◽  
...  

ABSTRACTIn the present study the ion irradiation technique is used to investigate the origin of the stress-field in Mo layers grown by ion beam sputtering. Strain measurements were performed by X- ray Diffraction (XRD) using the sin2ψ method. The evolution of the sin2ψ plots with ion irradiation shows that the usual assumption of a biaxial stress state is not adequate to determine the true stress-free lattice parameter a0 of the film. A new stress model based on a triaxial state of stress, which includes a hydrostatic component linked to point defects induced volume distortions, is derived to interpret the XRD results. For pure Mo films, the obtained a0 parameter is close to the bulk value, while for Mo sublayers in Mo/Ni superlattices, the a0 value is lower due to intermixing between Ni and Mo. These results demonstrate that ion irradiation is a powerful tool for stress relaxation, which allows to obtain additional information on the respective contribution of chemical effects and growth defects to the a0 value.


2011 ◽  
Vol 1354 ◽  
Author(s):  
Jean Paul Allain ◽  
Osman El-Atwani ◽  
Alex Cimaroli ◽  
Daniel L. Rokusek ◽  
Sami Ortoleva ◽  
...  

ABSTRACTIon-beam sputtering (IBS) has been studied as a means for scalable, mask-less nanopatterning of surfaces. Patterning at the nanoscale has been achieved for numerous types of materials including: semiconductors, metals and insulators. Although much work has been focused on tailoring nanopatterning by systematic ion-beam parameter manipulation, limited work has addressed elucidating on the underlying mechanisms for self-organization of multi-component surfaces. In particular there has been little attention to correlate the surface chemistry variation during ion irradiation with the evolution of surface morphology and nanoscale self-organization. Moreover the role of surface impurities on patterning is not well known and characterization during the time-scale of modification remains challenging. This work summarizes an in-situ approach to characterize the evolution of surface chemistry during irradiation and its correlation to surface nanopatterning for a variety of multi-components surfaces. The work highlights the importance and role of surface impurities in nanopatterning of a surface during low-energy ion irradiation. In particular, it shows the importance of irradiation-driven mechanisms in GaSb(100) nanopatterning by low-energy ions and how the study of these systems can be impacted by oxide formation.


2003 ◽  
Vol 426-432 ◽  
pp. 3451-3456 ◽  
Author(s):  
Philippe Goudeau ◽  
N. Merakeb ◽  
J.P. Eymery ◽  
D. Faurie ◽  
B. Boubeker ◽  
...  

1996 ◽  
Vol 14 (3) ◽  
pp. 777-780 ◽  
Author(s):  
Satoshi Kobayashi ◽  
Keiko Miyazaki ◽  
Shinji Nozaki ◽  
Hiroshi Morisaki ◽  
Shigeo Fukui ◽  
...  

1994 ◽  
Vol 337 ◽  
Author(s):  
K.G. Grigorov ◽  
A.H. Benhocine ◽  
D. Bouchier ◽  
F. Meyer

ABSTRACTTitanium monoxide films were deposited on silicon by reactive ion beam sputtering from a Ti target. The film composition was measured in situ by Auger electron spectrometry. It was observed that oxygen content in the deposit does not depend on the substrate temperature, up to 600 °C. Synthesized TiO films had a cubic structure with a lattice parameter of 4.17 Å, which confirmed that the O/Ti concentration ratio in the films was very close to the expected value. The films were found to be conductive, with a resistivity value equal to 170 μΩ cm. They had a yellowish metallic appearence and a very smooth surface. Sequences of annealings at increasing temperatures were performed under ultra-high-vacuum. No AES signal from silicon was observed up to a temperature of 700 °C.


2016 ◽  
Vol 93 (15) ◽  
Author(s):  
Javier Renedo ◽  
Rodolfo Cuerno ◽  
Mario Castro ◽  
Javier Muñoz-García

Sign in / Sign up

Export Citation Format

Share Document