Thermal Fatigue of MoSi2 Particulate and Short Fiber Composites

1994 ◽  
Vol 350 ◽  
Author(s):  
M. T. Kush ◽  
J. W. Holmes ◽  
R. Gibala

AbstractInduction heating of disk shaped specimens was used to compare and contrast the thermal fatigue behavior of MoSi2 and MoSi2-based composites. Specimens were subjected to 5 s heating and cooling cycles between temperature limits of 700°C and 1200°C. The monolithic material and a MoSi2- 10 vol% TiC composite exhibited poor thermal shock resistance and could not be thermally cycled according to this temperature-time profile. A 30 vol% TiC composite exhibited much better thermal shock and thermal fatigue resistance as compared to the monolithic material, but exhibited undesirable oxidation. MoSi2-10 and 30 vol% SiC particulate composites exhibited excellent thermal shock and thermal fatigue resistance compared to that of the monolithic material. A MoSi2-10 vol% SiC whisker composite did not show improved thermal fatigue resistance due to the initial processing defects present in the material. The monolithic material and the 10 vol% TiC composite were also subjected to 30 s heating and cooling cycles between temperature limits of 700°C and 1200°C. Both of these materials exhibited better thermal fatigue resistance at this temperature-time profile, but the 10 vol% TiC composite also exhibited undesirable oxidation. The fatigue results are discussed with reference to the initial microstructure of the specimens and the stress-strain history of the specimens which was obtained by a thermoelastic finite element analysis.

Mechanika ◽  
2021 ◽  
Vol 27 (5) ◽  
pp. 385-391
Author(s):  
Ghusoon Ridha Mohammed Ali ◽  
Ethar Mohammed Mubarak ◽  
Basim Hussein Abbas

In industrial fields, thermal fatigue behavior has recently acquired an important role which is mainly related to the interaction between mechanical and thermal conditions. This paper proposes a thermal fatigue model of H13 tool steel under thermos-mechanical cycles. A test apparatus was used to assess the thermal fatigue resistance of materials to estimate surface crack area when specimens are subjected to thermal cycling. Thermal cycling up to 700°C was used, and crack patterns were examined after 1850, 3000, and 5000 cycles. Temperature distributions were measured at different locations in the test specimens. A model was developed to establish a relationship between mechanical cycling and thermal analysis. From the results, the thermal fatigue resistance was significantly improved over the control parameter after heating and cooling during thermomechanical cycles. The model was applied to determine the best performance and in-service life of die casting tools.


Materials ◽  
2021 ◽  
Vol 14 (11) ◽  
pp. 3050
Author(s):  
Hai Tang ◽  
Chunxue Li ◽  
Jianying Gao ◽  
Bruno Touzo ◽  
Chunfeng Liu ◽  
...  

Aiming at optimizing properties of alumina-spinel refractory castables, coarse corundum particles were replaced partially with the particles of a novel porous multi-component CMA (CaO-MgO-Al2O3) aggregate in the same size. Properties including the bulk density, apparent porosity, strength, slag corrosion resistance, thermal shock resistance and thermal fatigue resistance of alumina-spinel refractory castables containing CMA aggregates were evaluated contrastively. The results demonstrated that the incorporation of CMA aggregates can significantly improve thermal shock resistance and thermal fatigue resistance of castables, although companying with slight decrease in the bulk density and strength. Moreover, slag penetration resistance of castables can also be enhanced by CMA aggregates with appropriate particle size. The influence of CMA aggregates on properties of alumina-spinel refractory castables depended strongly on their particle size.


Alloy Digest ◽  
1994 ◽  
Vol 43 (2) ◽  

Abstract THERMO-SPAN ALLOY is a precipitation-hardenable superalloy with a low coefficient of expansion combined with tensile and stress-rupture strength. Thermal fatigue resistance is inherent. This datasheet provides information on composition, physical properties, elasticity, and tensile properties as well as creep. It also includes information on forming and heat treating. Filing Code: FE-105. Producer or source: Carpenter.


2011 ◽  
Vol 287-290 ◽  
pp. 949-952
Author(s):  
Yong Zhe Fan ◽  
Yu Chen Song ◽  
Rui Na Ma

According to the requirement of the pot scaleboard of Coke Dry Quenching, high content of aluminium heat resisting alloy was developed.Through changing the content of carbon,boron and titanium,the best compounding of the heat resisting alloy was Fe-8Al-1B-5Cr-0.3C-0.5Ti.The microstructure of this kind of alloy was observed and analyzed with optical microscope.It also had good performance of oxidation resistance,abrasion resistance and thermal fatigue resistance,it was suitable for using as pot scaleboard of CDQ.


2010 ◽  
Vol 97-101 ◽  
pp. 1321-1327 ◽  
Author(s):  
Xiao Ping Zhou ◽  
Xin Bin Hu ◽  
Yi Sheng Xu

The microstructure and properties of ternary boride ceramic coating prepared by reactive flame spraying on surface of H13 steel are studied as well as the microstructures, microhardness, wear resistance and thermal fatigue resistance of the coating. The results show that the Mo2FeB2 cermet coating by reactive flame spraying has good wear resistance and thermal fatigue resistance and its microhardness can even reach 1200 HV.


Sign in / Sign up

Export Citation Format

Share Document