scholarly journals Thermal Fatigue Model of Aluminium Alloy Die Casting H-13 Dies under Thermo-Mechanical Cycle

Mechanika ◽  
2021 ◽  
Vol 27 (5) ◽  
pp. 385-391
Author(s):  
Ghusoon Ridha Mohammed Ali ◽  
Ethar Mohammed Mubarak ◽  
Basim Hussein Abbas

In industrial fields, thermal fatigue behavior has recently acquired an important role which is mainly related to the interaction between mechanical and thermal conditions. This paper proposes a thermal fatigue model of H13 tool steel under thermos-mechanical cycles. A test apparatus was used to assess the thermal fatigue resistance of materials to estimate surface crack area when specimens are subjected to thermal cycling. Thermal cycling up to 700°C was used, and crack patterns were examined after 1850, 3000, and 5000 cycles. Temperature distributions were measured at different locations in the test specimens. A model was developed to establish a relationship between mechanical cycling and thermal analysis. From the results, the thermal fatigue resistance was significantly improved over the control parameter after heating and cooling during thermomechanical cycles. The model was applied to determine the best performance and in-service life of die casting tools.

2011 ◽  
Vol 291-294 ◽  
pp. 1405-1411
Author(s):  
Tong Xin ◽  
Zhou Hong ◽  
Liu Min

The past studies indicated that thermal fatigue resistance of cast irons could be improved by partly laser melting treatment. However the only disadvantage of this technology is that the enhancement of thermal fatigue resistance would be limited because of the fixed chemical composition of sample matrix. For this purpose, the laser surface alloying of CrNi was selected for changing both the compositions and the microstructures of laser treated zone, and the effects of alloy powder compositions on thermal fatigue behavior were also investigated in this paper. The results indicate that the alloy elements distribute homogeneously, and their contents increase markedly in the non-smooth unit on the alloyed layer. The non-smooth unit is strengthened further compared with laser melting treatment. Thermal fatigue resistance of cast iron is enhanced evidently by laser surface alloying of CrNi powders, and for all samples tested, those treated with 25%Cr-75%Ni powders have the best thermal fatigue resistance.


1992 ◽  
Vol 270 ◽  
Author(s):  
Q.C. Gu ◽  
T.K. LepistÖ ◽  
P.O. Kettunen

ABSTRACTThermal fatigue resistance of carbon-carbon composites with three different fiber surface treatments is studied in thermal cycles between 100 °C and 1,700 °C up to a number of cycles of 100 in free and restricted expansion conditions. The effects of thermal cycles were studied by SEM paying attention especially to structural damage and interfacial debonding between fibers and matrix. Bending tests subsequent to 10 thermal cycles were used to study the effect of thermal cycling on mechanical properties of the composites. The effect depends on the surface treatment of fibers prior to pyrolization. In some cases, the bending strength decreased due to the thermal cycling, whereas a suitable surface treatment minimized the damaging effect and increased the pseudo-ductility of the composite.


1994 ◽  
Vol 350 ◽  
Author(s):  
M. T. Kush ◽  
J. W. Holmes ◽  
R. Gibala

AbstractInduction heating of disk shaped specimens was used to compare and contrast the thermal fatigue behavior of MoSi2 and MoSi2-based composites. Specimens were subjected to 5 s heating and cooling cycles between temperature limits of 700°C and 1200°C. The monolithic material and a MoSi2- 10 vol% TiC composite exhibited poor thermal shock resistance and could not be thermally cycled according to this temperature-time profile. A 30 vol% TiC composite exhibited much better thermal shock and thermal fatigue resistance as compared to the monolithic material, but exhibited undesirable oxidation. MoSi2-10 and 30 vol% SiC particulate composites exhibited excellent thermal shock and thermal fatigue resistance compared to that of the monolithic material. A MoSi2-10 vol% SiC whisker composite did not show improved thermal fatigue resistance due to the initial processing defects present in the material. The monolithic material and the 10 vol% TiC composite were also subjected to 30 s heating and cooling cycles between temperature limits of 700°C and 1200°C. Both of these materials exhibited better thermal fatigue resistance at this temperature-time profile, but the 10 vol% TiC composite also exhibited undesirable oxidation. The fatigue results are discussed with reference to the initial microstructure of the specimens and the stress-strain history of the specimens which was obtained by a thermoelastic finite element analysis.


2013 ◽  
Vol 58 (3) ◽  
pp. 757-761 ◽  
Author(s):  
J. Zych

Abstract The work presents the results of research on thermal fatigue resistance of four steel grades used in the production of metal moulds for pressure diecasting. Thermal fatigue tests were performed on an original test bench using the L.F Coffin method - resistance heated samples. The steels additionally contained alloy additives in the following proportions: Cr = 5.0 ÷5.3%, Mo = 1.30 ÷3.0%, and V = 0.50 ÷1.0%. The thermal fatigue was analyzed using the temperature cycle: Tmin = 200°C; Tmax = 700 ÷750°C. The samples endured between few to few dozens of thousands of temperature cycles in the above temperature range. Steel with maximum vanadium content exhibited the highest level of resistance.


Alloy Digest ◽  
1994 ◽  
Vol 43 (2) ◽  

Abstract THERMO-SPAN ALLOY is a precipitation-hardenable superalloy with a low coefficient of expansion combined with tensile and stress-rupture strength. Thermal fatigue resistance is inherent. This datasheet provides information on composition, physical properties, elasticity, and tensile properties as well as creep. It also includes information on forming and heat treating. Filing Code: FE-105. Producer or source: Carpenter.


2011 ◽  
Vol 287-290 ◽  
pp. 949-952
Author(s):  
Yong Zhe Fan ◽  
Yu Chen Song ◽  
Rui Na Ma

According to the requirement of the pot scaleboard of Coke Dry Quenching, high content of aluminium heat resisting alloy was developed.Through changing the content of carbon,boron and titanium,the best compounding of the heat resisting alloy was Fe-8Al-1B-5Cr-0.3C-0.5Ti.The microstructure of this kind of alloy was observed and analyzed with optical microscope.It also had good performance of oxidation resistance,abrasion resistance and thermal fatigue resistance,it was suitable for using as pot scaleboard of CDQ.


Sign in / Sign up

Export Citation Format

Share Document