Peculiarities in the Epitaxial Regrowth of Ion-Implanted Si1−xGex Alloy Layers Grown on Compositionally Graded Buffers

1994 ◽  
Vol 373 ◽  
Author(s):  
M. Fyhn ◽  
S. Yu. Shiryaev ◽  
A. Nylandsted Larsen ◽  
J. Lundsgaard Hansen

AbstractSolid phase epitaxial regrowth of ion-implanted relaxed Si1-xGex layers was studied as a function of alloy composition (0.15< x <0.5) by a combination of Rutherford backscattering/ channeling spectrometry and transmission electron microscopy. The samples were grown by molecular beam epitaxy on compositionally graded buffers at different growth conditions. It was found that the regrowth velocity follows an Arrhenius curve in the investigated composition range and increases with increasing Ge content. The activation energies of the epitaxial regrowth were found to be higher than those expected from a linear interpolation between the values for pure Si and Ge. It is demonstrated that the regrowth velocities in the samples grown at 550 and 750°C and with low-rotational speed of the substrate during growth depend on the lateral position on the wafer and that they can be reduced by a preannealing treatment at high temperatures (σ920°C). We suggest that these effects arise from a compositional modulation in the alloy layer and, therefore, from a symmetrized strain, which can be reduced by a high temperature annealing.

1989 ◽  
Vol 160 ◽  
Author(s):  
T. L. Lin ◽  
C. W. Nieh

AbstractEpitaxial IrSi3 films have been grown on Si (111) by molecular beam epitaxy (MBE) at temperatures ranging from 630 to 800 °C and by solid phase epitaxy (SPE) at 500 °C. Good surface morphology was observed for IrSi3 layers grown by MBE at temperatures below 680 °C, and an increasing tendency to form islands is noted in samples grown at higher temperatures. Transmission electron microscopy (TEM) analysis reveals that the IrSi3 layers grow epitaxially on Si(111) with three epitaxial modes depending on the growth conditions. For IrSi3 layers grown by MBE at 630 °C, two epitaxial modes were observed with ~ 50% area coverage for each mode. Single mode epitaxial growth was achieved at a higher MBE growth temperature, but with island formation in the IrSi3 layer. A template technique was used with MBE to improve the IrSi3 surface morphology at higher growth temperatures. Furthermore, single-crystal IrSi3 was grown on Si(111) at 500 °C by SPE, with annealing performed in-situ in a TEM chamber.


1992 ◽  
Vol 281 ◽  
Author(s):  
T. E. Haynes ◽  
C. Lee ◽  
K. S. Jones

ABSTRACTThe rate of solid-phase epitaxial regrowth has been studied using time-resolved reflectivity in three different types of SiGe/Si epilayers amorphized by ion implantation. In two of these cases, the alloy epilayer contained either 12% or 20% Ge, and the amorphization depth was greater than the thickness (2000 Å) of the SiGe alloy layer. Time-resolved reflectivity measurements showed that the rate of regrowth was not constant in these two cases, but first decreased after passing the SiGe/Si interface, and then increased. The minimum regrowth rate occurred closer to the SiGe/Si interface in the epilayers with the larger Ge atomic fraction. In the third type of sample, the alloy epilayer thickness was ∼7μm, so that the initial epilayer (15% Ge) had the lattice constant of the bulk alloy. Furthermore, amorphization and regrowth occurred entirely within the relaxed alloy layer. In this case, the regrowth rate was constant. The composition dependence of the regrowth-rate transient in the strained layers is discussed in the context of a ‘critical-thickness’ model of strain relaxation.


1997 ◽  
Vol 3 (S2) ◽  
pp. 477-478
Author(s):  
M.G. Shlepr ◽  
G.A. Schrantz ◽  
A.L. Rivoli ◽  
G. Bajor

A recent process technology to manufacture bipolar junction transistors utilizes polysilicon emitters. Polysilicon is deposited, appropriately doped to form both NPN and PNP transistors, and exposed to temperatures that result in grain growth. Since polysilicon is in contact with Si( 100) at the emitter, base, and collector (Fig. 1), solid phase epitaxial regrowth might also occur. Production runs with this structure occasionally produce transistors with low current gain. High and low gain NPN and PNP transistors were characterized by transmission electron microscopy.Vertical sections through NPN/PNP transistor arrays were made by the wedge technique, low-angle ion milled to electron-transparency, and viewed at 200 KV. The grain size of the polysilicon on oxide was recorded and estimated. The extent of epitaxial regrowth was quantified for each of the Si (100) contact areas. Convergent Beam Electron Diffraction (CBED) was used to confirm the orientation of the presumed regrown polysilicon.


1981 ◽  
Vol 10 ◽  
Author(s):  
J. S. Williams ◽  
F. M. Adams ◽  
K. G. Rossiter

High resolution ion channelling and reflection electron diffraction techniques have been used to examine details of epitaxial regrowth in Ar+-ion-implanted GaAs(100) at furnace anneal temperatures of 400°C or less. In particular, we have investigated the nature and extent of epitaxial regrowth during both isothermal and isochronal annealing for various implant energies and for implant doses above and below the amorphous threshold. Our results indicate the development of a nonplanar growth interface during annealing which may lead, ultimately, to complex near-surface crystallization processes. Consistently with our observations and recent results from other laboratories, we propose a model for the epitaxial regrowth of amorphous GaAs layers based upon non-uniform growth rates along the amorphous-crystalline interface which could arise from local stoichiometry imbalance.


1983 ◽  
Vol 27 ◽  
Author(s):  
R.G. Elliman ◽  
S.T. Johnson ◽  
K.T. Short ◽  
J.S. Williams

ABSTRACTThis paper outlines a model to account for the influence of doping and electronic processes on the solid phase epitaxial regrowth rate of ion implanted (100) silicon. In addition we present data which illustrates good quality epitaxial crystallisation of silicon at 400°C induced by He+ ion irradiation. We tentatively suggest that electronic energy-loss processes may be responsible for this behaviour.


2015 ◽  
Vol 8 (2) ◽  
pp. 021302
Author(s):  
Kuan-Kan Hu ◽  
Shin-Yang Liang ◽  
Wei Yen Woon

2003 ◽  
Vol 762 ◽  
Author(s):  
M. S. Mason ◽  
C.M. Chen ◽  
H.A. Atwater

AbstractWe investigate low-temperature epitaxial growth of thin silicon films on Si [100] substrates and polycrystalline template layers formed by selective nucleation and solid phase epitaxy (SNSPE). We have grown 300 nm thick epitaxial layers at 300°C on silicon [100] substrates using a high H2:SiH4 ratio of 70:1. Transmission electron microscopy confirms that the films are epitaxial with a periodic array of stacking faults and are highly twinned after approximately 240 nm of growth. Evidence is also presented for epitaxial growth on polycrystalline SNSPE templates under the same growth conditions.


2006 ◽  
Vol 21 (11) ◽  
pp. 2876-2881 ◽  
Author(s):  
Kok-Keong Lew ◽  
Ling Pan ◽  
Elizabeth C. Dickey ◽  
Joan M. Redwing

The effect of growth conditions on the composition and structure of Si1−xGex nanowires grown by the vapor–liquid–solid method using gaseous precursors (SiH4 and GeH4) was investigated. Transmission electron microscopy was used to characterize the structural properties and elemental composition of the nanowires. At higher growth temperatures (>425 °C), Ge thin film deposition on the nanowire surface resulted in Au loss during growth and the formation of tapered structures. By simultaneously reducing the growth temperature from 425 to 325 °C to suppress the rate of Ge film deposition and increasing the GeH4/(GeH4 + SiH4) gas ratio, Si1−xGex nanowires were produced with Ge fractions spanning the entire composition range. The Ge fraction follows that predicted from the elemental nanowire growth rates in the Ge-rich (x > 0.5) regime, but deviates to higher Ge fractions in Si-rich (x < 0.5) nanowires. A mechanism was proposed whereby surface diffusion provides an additional pathway to Ge incorporation in Si-rich Si1−xGex nanowires.


1982 ◽  
Vol 13 ◽  
Author(s):  
B. R. Appleton ◽  
J. Narayan ◽  
O. W. Holland ◽  
S. J. Pennycook

AbstractIt Will be shown that under suitable conditions ion implanted impurities in Si can precipitate and grow coherently within the single crystal lattice during recrystallization induced by pulsed laser or thermal annealing. Ion channeling and transmission electron microscopy (Tem) were used to characterize such precipitates in Si implanted with Sb and B and thermally annealed, and in Si implanted with Tl and annealed with a pulsed ruby laser.The orientations of these precipitates were determined from TEM and detailed angular scans using ion scattering channeling.The nucleation and precipitation processes will be discussed in terms of differences in the liquid and solid phase regrowth mechanisms.


Sign in / Sign up

Export Citation Format

Share Document