Coherent Precipitate Formation In Pulsed-Laser And Thermally-Annealed, Ion-Implanted Si.*

1982 ◽  
Vol 13 ◽  
Author(s):  
B. R. Appleton ◽  
J. Narayan ◽  
O. W. Holland ◽  
S. J. Pennycook

AbstractIt Will be shown that under suitable conditions ion implanted impurities in Si can precipitate and grow coherently within the single crystal lattice during recrystallization induced by pulsed laser or thermal annealing. Ion channeling and transmission electron microscopy (Tem) were used to characterize such precipitates in Si implanted with Sb and B and thermally annealed, and in Si implanted with Tl and annealed with a pulsed ruby laser.The orientations of these precipitates were determined from TEM and detailed angular scans using ion scattering channeling.The nucleation and precipitation processes will be discussed in terms of differences in the liquid and solid phase regrowth mechanisms.

1993 ◽  
Vol 8 (11) ◽  
pp. 2933-2941 ◽  
Author(s):  
S.D. Walek ◽  
M.S. Donley ◽  
J.S. Zabinski ◽  
V.J. Dyhouse

Molybdenum disulfide is a technologically important solid phase lubricant for vacuum and aerospace applications. Pulsed laser deposition of MoS2 is a novel method for producing fully dense, stoichiometric thin films and is a promising technique for controlling the crystallographic orientation of the films. Transmission electron microscopy (TEM) of self-supporting thin films and cross-sectional TEM samples was used to study the crystallography and microstructure of pulsed laser deposited films of MoS2. Films deposited at room temperature were found to be amorphous. Films deposited at 300 °C were nanocrystalline and had the basal planes oriented predominately parallel to the substrate within the first 12–15 nm of the substrate with an abrupt upturn into a perpendicular (edge) orientation farther from the substrate. Spherically shaped particles incorporated in the films from the PLD process were found to be single crystalline, randomly oriented, and less than about 0.1 μm in diameter. A few of these particles, observed in cross section, had flattened bottoms, indicating that they were molten when they arrived at the surface of the growing film. Analytical electron microscopy (AEM) was used to study the chemistry of the films. The x-ray microanalysis results showed that the films have the stoichiometry of cleaved single crystal MoS2 standards.


1997 ◽  
Vol 3 (S2) ◽  
pp. 413-414
Author(s):  
E.M. Hunt ◽  
J.M. Hampikian ◽  
N.D. Evans

Ion implantation can be used to alter the optical response of insulators through the formation of embedded nano-sized particles. Single crystal alumina has been implanted at ambient temperature with 50 keV Ca+ to a fluence of 5 x 1016 ions/cm2. Ion channeling, Knoop microhardness measurements, and transmission electron microscopy (TEM) indicate that the alumina surface layer was amorphized by the implant. TEM also revealed nano-sized crystals ≈7 - 8 nm in diameter as seen in Figure 1. These nanocrystals are randomly oriented, and exhibit a face-centered cubic structure (FCC) with a lattice parameter of 0.409 nm ± 0.002 nm. The similarity between this crystallography and that of pure aluminum (which is FCC with a lattice parameter of 0.404 nm) suggests that they are metallic aluminum nanocrystals with a slightly dilated lattice parameter, possibly due to the incorporation of a small amount of calcium.Energy-filtered transmission electron microscopy (EFTEM) provides an avenue by which to confirm the metallic nature of the aluminum involved in the nanocrystals.


1998 ◽  
Vol 4 (3) ◽  
pp. 269-277 ◽  
Author(s):  
A. Agrawal ◽  
J. Cizeron ◽  
V.L. Colvin

In this work, the high-temperature behavior of nanocrystalline TiO2 is studied using in situ transmission electron microscopy (TEM). These nanoparticles are made using wet chemical techniques that generate the anatase phase of TiO2 with average grain sizes of 6 nm. X-ray diffraction studies of nanophase TiO2 indicate the material undergoes a solid-solid phase transformation to the stable rutile phase between 600° and 900°C. This phase transition is not observed in the TEM samples, which remain anatase up to temperatures as high as 1000°C. Above 1000°C, nanoparticles become mobile on the amorphous carbon grid and by 1300°C, all anatase diffraction is lost and larger (50 nm) single crystals of a new phase are present. This new phase is identified as TiC both from high-resolution electron microscopy after heat treatment and electron diffraction collected during in situ heating experiments. Video images of the particle motion in situ show the nanoparticles diffusing and interacting with the underlying grid material as the reaction from TiO2 to TiC proceeds.


1998 ◽  
Vol 526 ◽  
Author(s):  
R. Kalyanaraman ◽  
S. Oktyabrsky ◽  
K. Jagannadham ◽  
J. Narayan

AbstractThe atomic structure of grain boundaries in pulsed laser deposited YBCO/MgO thin films have been studied using transmission electron microscopy. The films have perfect texturing with YBCO(001)//MgO(001), giving rise to low-angle [001] tilt boundaries from the grains with the c-axis normal to substrate surface. Low angle grain boundaries have been found to be aligned preferentially along (100) and (110) interface planes. The energy of (110) boundary planes described by an alternating array of [100] and [010] dislocation is found to be comparable to the energy of a (100) boundary. The existence of these split dislocations is shown to further reduce the theoretical current densities of these boundaries indicating that (110) boundaries carry less current as compared to (100) boundaries of the same misorientation angle. Further, Z-contrast transmission electron microscopy of a 42° asymmetric high-angle grain boundary of YBCO shows evidence for the existence of boundary fragments and a reduced atomic density along the boundary plane


1995 ◽  
Vol 379 ◽  
Author(s):  
N.D. Theodore ◽  
W.S. Liu ◽  
D.Y.C. Lie ◽  
T.K. Cams ◽  
K.L. Wang

ABSTRACTTransmission electron microscopy, conventional and high-resolution, is used to characterize the microstructural behavior of oxidized Ge0.78Si0.12 layers annealed in a reducing 95% N2+ 5% H2 ambient. An epitaxial Ge layer grows by solid-phase epitaxy on an underlying Ge0.78Si0.12 seeding layer with a Ge-Sio2 matrix positioned between them. Defect densities in the epitaxial Ge are significantly lower than in the underlying Ge0.78Si0.12. Microstructural details of this behavior are investigated.


1995 ◽  
Vol 10 (4) ◽  
pp. 791-794 ◽  
Author(s):  
S. Stemmer ◽  
S.K. Streiffer ◽  
W-Y. Hsu ◽  
F. Ernst ◽  
R. Raj ◽  
...  

We have used conventional and high-resolution transmission electron microscopy to investigate the microstruture of epitaxial, ferroelectric PbTiO3 films grown by pulsed laser ablation on (001) MgO single crystals, and on MgO covered with epitaxial Pt or SrTiO3. Pronounced variations are found in the widths and lengths of a-axis-oriented domains in these films, although the volume fraction of a-axis-oriented material varies only weakly for the different types of samples. In addition, the films deposited onto Pt-coated MgO have a larger grain size than those deposited onto bare MgO or SrTiO3/MgO. Possible reasons for the variations in the distribution of a-axis-oriented material in these samples include differences in the elastic properties and electrical conductivities of the different substrate combinations.


2000 ◽  
Vol 623 ◽  
Author(s):  
N.D. Zakharov ◽  
A.R. James ◽  
A. Pignolet ◽  
S. Senz ◽  
D. Hesse

AbstractEpitaxial, ferroelectric Ba2Bi4Ti5O18 films grown on LaNiO3/CeO2/ZrO2:Y2O3 epitaxial layers on Si(100) are investigated by cross-section high-resolution transmission electron microscopy (HRTEM). The films are perfectly oriented and consist of well-developed grains of rectangular shape. The grain boundaries are strained and contain many defects, especially a new type of defect, which can be described as a staircase formed by repeated lattice shifts of Δ ∼ c/12 ∼ 4.2 Å in the [001] direction. This repeated shift results in seemingly bent ribbons of stacked Bi2O2 planes, involving, however, individual Bi2O2 planes which remain strongly parallel to the (001) plane. These defects contain an excess of bismuth. Other defects found in the grain interior include mistakes in the stacking sequence originating from the presence of single, well-oriented, non-stoichionietric layers intergrown with the stoichiometric Ba2Bi4Ti5O18 film matrix.


Sign in / Sign up

Export Citation Format

Share Document