Hot-Wire Chemical Vapor Deposition for Epitaxial Silicon Growth On Large-Grained Polycrystalline Silicon Templates

2003 ◽  
Vol 762 ◽  
Author(s):  
M. S. Mason ◽  
C.M. Chen ◽  
H.A. Atwater

AbstractWe investigate low-temperature epitaxial growth of thin silicon films on Si [100] substrates and polycrystalline template layers formed by selective nucleation and solid phase epitaxy (SNSPE). We have grown 300 nm thick epitaxial layers at 300°C on silicon [100] substrates using a high H2:SiH4 ratio of 70:1. Transmission electron microscopy confirms that the films are epitaxial with a periodic array of stacking faults and are highly twinned after approximately 240 nm of growth. Evidence is also presented for epitaxial growth on polycrystalline SNSPE templates under the same growth conditions.

1992 ◽  
Vol 275 ◽  
Author(s):  
J. Chen ◽  
H. A. Lu ◽  
F. DiMeo ◽  
B. W. Wessels ◽  
D. L. Schulz ◽  
...  

ABSTRACT-Heteroepitaxial superconducting Bi,Sr2CaCu2Ox (BSCCO 2212) thin films have been formed by solid phase epitaxy from amorphous films deposited on (100) LaA1O3 single crystal substrates by organometallic chemical vapor deposition. The epitaxial structure of the film is confirmed by x-ray diffraction including θ/2θ and Φ (in plane rotation) scans. Cross-sectional high resolution transmission electron microscopy indicates that the film-substrate interface is nearly atomically abrupt. Improvements in superconducting properties of the epitaxial thin films are noted in comparison to highly textured films deposited on MgO.


1999 ◽  
Vol 570 ◽  
Author(s):  
J. Thiesen ◽  
K.M. Jones ◽  
R. Matson ◽  
R. Reedy ◽  
E. Iwaniczko ◽  
...  

ABSTRACTWe report on the first known growth of high-quality epitaxial Si via the hot wire chemical vapor deposition (HWCVD) method. This method yields epitaxial Si at the comparatively low temperatures of 195° to 450°C, and relatively high growth rates of 3 to 20 Å/sec. Layers up to 4500-Å thick have been grown. These epitaxial layers have been characterized by transmission electron microscopy (TEM), indicating large regions of nearly perfect atomic registration. Electron channeling patterns (ECPs) generated on a scanning electron microscope (SEM) have been used to characterize, as well as optimize the growth process. Electron beam induced current (EBIC) characterization has also been performed, indicating defect densities as low as 8×104/cm2. Secondary ion beam mass spectrometry (SIMS) data shows that these layers have reasonable impurity levels within the constraints of our current deposition system. Both n and p-type layers were grown, and p/n diodes have been fabricated.


2004 ◽  
Vol 808 ◽  
Author(s):  
Christine E. Richardson ◽  
Maribeth S. Mason ◽  
Harry A. Atwater

ABSTRACTThe fabrication of low temperature polycrystalline silicon with lifetimes close to single crystalline silicon, but with internal surface passivation similar to that observed in deposited microcrystalline silicon, is a promising direction for thin film polycrystalline silicon photovoltaics. To achieve this, large grains with passivated grain boundaries and intragranular defects are required. We investigate the low-temperature (250-550°C) epitaxial growth of thin silicon films by hot-wire chemical vapor deposition (HWCVD) on Si(100) substrates and large-grained polycrystalline silicon template layers formed by selective nucleation and solid phase epitaxy (SNSPE). Using reflection high energy electron diffraction (RHEED) and transmission electron microscopy (TEM), we have observed epitaxial, twinned epitaxial, mixed epitaxial/polycrystalline and polycrystalline phases in the 50 nm–15 μm thickness regime. HWCVD growth on Si(100) was performed using a mixture of diluted silane (4% in He) and hydrogen at a H2/SiH4 ratio of 50:1 at substrate temperatures from 300–475°C. We will discuss the relationship between the microstructure and photoconductive decay lifetimes of these undoped layers on Si(100) and SNSPE templates as well as their suitability for use in thin-film photovoltaic applications.


Author(s):  
N. David Theodore ◽  
Leslie H. Allen ◽  
C. Barry Carter ◽  
James W. Mayer

Metal/polysilicon investigations contribute to an understanding of issues relevant to the stability of electrical contacts in semiconductor devices. These investigations also contribute to an understanding of Si lateral solid-phase epitactic growth. Metals such as Au, Al and Ag form eutectics with Si. reactions in these metal/polysilicon systems lead to the formation of large-grain silicon. Of these systems, the Al/polysilicon system has been most extensively studied. In this study, the behavior upon thermal annealing of Au/polysilicon bilayers is investigated using cross-section transmission electron microscopy (XTEM). The unique feature of this system is that silicon grain-growth occurs at particularly low temperatures ∽300°C).Gold/polysilicon bilayers were fabricated on thermally oxidized single-crystal silicon substrates. Lowpressure chemical vapor deposition (LPCVD) at 620°C was used to obtain 100 to 400 nm polysilicon films. The surface of the polysilicon was cleaned with a buffered hydrofluoric acid solution. Gold was then thermally evaporated onto the samples.


Crystals ◽  
2020 ◽  
Vol 10 (4) ◽  
pp. 237
Author(s):  
M. Abul Hossion ◽  
B. M. Arora

Boron-doped polycrystalline silicon film was synthesized using hot wire chemical vapor deposition technique for possible application in photonics devices. To investigate the effect of substrate, we considered Si/SiO2, glass/ITO/TiO2, Al2O3, and nickel tungsten alloy strip for the growth of polycrystalline silicon films. Scanning electron microscopy, optical reflectance, optical transmittance, X-ray diffraction, and I-V measurements were used to characterize the silicon films. The resistivity of the film was 1.3 × 10−2 Ω-cm for the polycrystalline silicon film, which was suitable for using as a window layer in a solar cell. These films have potential uses in making photodiode and photosensing devices.


1989 ◽  
Vol 160 ◽  
Author(s):  
T. L. Lin ◽  
C. W. Nieh

AbstractEpitaxial IrSi3 films have been grown on Si (111) by molecular beam epitaxy (MBE) at temperatures ranging from 630 to 800 °C and by solid phase epitaxy (SPE) at 500 °C. Good surface morphology was observed for IrSi3 layers grown by MBE at temperatures below 680 °C, and an increasing tendency to form islands is noted in samples grown at higher temperatures. Transmission electron microscopy (TEM) analysis reveals that the IrSi3 layers grow epitaxially on Si(111) with three epitaxial modes depending on the growth conditions. For IrSi3 layers grown by MBE at 630 °C, two epitaxial modes were observed with ~ 50% area coverage for each mode. Single mode epitaxial growth was achieved at a higher MBE growth temperature, but with island formation in the IrSi3 layer. A template technique was used with MBE to improve the IrSi3 surface morphology at higher growth temperatures. Furthermore, single-crystal IrSi3 was grown on Si(111) at 500 °C by SPE, with annealing performed in-situ in a TEM chamber.


Sign in / Sign up

Export Citation Format

Share Document