In-Situ Plume Diagnosis During Pulsed Laser Deposition of Epitaxial-Oxide Thin Films

1995 ◽  
Vol 397 ◽  
Author(s):  
David B. Fenner ◽  
Pang-Jen Kung ◽  
Jörn Gores ◽  
Qi Li

ABSTRACTThe visible plume, induced during pulsed-laser deposition (PLD) of epitaxial La0.5.jSr0.5 5CoO3/Ba0.4Sr0.6TiO3/La0.5Sr05CoO3/YBa2Cu3O7/YSZ heterostructures on silicon (100) wafers, was studied by optical-emission spectroscopy (OES). These films are suitable for the fabrication of ferroelectric capacitors and pyroelectric-sensor devices. A YAG laser, at 266 nm, is used for ablation. A collection lens transfers the PLD-plume emission into an optical fiber and onto a diffraction grating and a CCD array, for time-averaged spectroscopy from 410 to 640 nm. Plume emissions from ablated targets in the presence of an oxygen ambient, due to various atomic (Ba, Co, Cu, Sr, Ti, Y, Zr), ionic (Ba+, La+, Sr+, Y+), and a diatomic oxide (YO) species were identified. Emission intensity and evolution of ablated species are reported for distance away from the target surface, oxygen pressures, and laser fluences (1 to 4 J/cm2). The behavior of reactive-product species, especially YO for plumes from yttria-stabilized zirconia (YSZ) and YBCO targets, is discussed. This simple and inexpensive OES system is suitable for use as a plume-quality monitor on routine PLD film synthesis.

Materials ◽  
2020 ◽  
Vol 13 (6) ◽  
pp. 1360
Author(s):  
Konrad Trzciński ◽  
Mariusz Szkoda ◽  
Maria Gazda ◽  
Jakub Karczewski ◽  
Adam Cenian ◽  
...  

Thin layers of bismuth vanadate were deposited using the pulsed laser deposition technique on commercially available FTO (fluorine-doped tin oxide) substrates. Films were sputtered from a sintered, monoclinic BiVO4 pellet, acting as the target, under various oxygen pressures (from 0.1 to 2 mbar), while the laser beam was perpendicular to the target surface and parallel to the FTO substrate. The oxygen pressure strongly affects the morphology and the composition of films observed as a Bi:V ratio gradient along the layer deposited on the substrate. Despite BiVO4, two other phases were detected using XRD (X-ray diffraction) and Raman spectroscopy—V2O5 and Bi4V2O11. The V-rich region of the samples deposited under low and intermediate oxygen pressures was covered by V2O5 longitudinal structures protruding from BiVO4 film. Higher oxygen pressure leads to the formation of Bi4V2O11@BiVO4 bulk heterojunction. The presented results suggest that the ablation of the target leads to the plasma formation, where Bi and V containing ions can be spatially separated due to the interactions with oxygen molecules. In order to study the phenomenon more thoroughly, laser-induced breakdown spectroscopy measurements were performed. Then, obtained electrodes were used as photoanodes for photoelectrochemical water splitting. The highest photocurrent was achieved for films deposited under 1 mbar O2 pressure and reached 1 mA cm−2 at about 0.8 V vs Ag/AgCl (3 M KCl). It was shown that V2O5 on the top of BiVO4 decreases its photoactivity, while the presence of a bulk Bi4V2O11@BiVO4 heterojunction is beneficial in water photooxidation.


2019 ◽  
Vol 33 (1) ◽  
pp. 205-212 ◽  
Author(s):  
Gertjan Koster ◽  
Dave H. A. Blank ◽  
Guus A. J. H. M. Rijnders

Abstract For thin film synthesis of complex oxides, one of the most important issues has always been how to oxidise the material. For a technique like pulsed laser deposition, a key benefit is the relatively high oxygen background pressure one can operate at, and therefor oxidation should be relatively straightforward. However, understanding the microscopic oxidation mechanisms turns out to be rather difficult. In this perspective, we give a brief overview of the sources of oxidation for complex oxide thin films grown by pulsed laser deposition. While it is clear what these sources are, their role in the kinetics of the formation of the crystal structure and oxygen stoichiometry is not fully understood.


Vacuum ◽  
2013 ◽  
Vol 90 ◽  
pp. 151-154 ◽  
Author(s):  
Chen Hon Nee ◽  
Seong Shan Yap ◽  
Wee Ong Siew ◽  
Turid Worren Reenaas ◽  
Teck Yong Tou

Vacuum ◽  
2002 ◽  
Vol 69 (1-3) ◽  
pp. 267-271 ◽  
Author(s):  
V.N Tsaneva ◽  
N.A Stelmashenko ◽  
I.N Martev ◽  
Z.H Barber ◽  
M.G Blamire

2020 ◽  
Author(s):  
Stefan Andrei Irimiciuc ◽  
Norina Forna ◽  
Andrei Agop ◽  
Maricel Agop ◽  
Stefan Toma ◽  
...  

Understanding the underline fundamental mechanism behind experimental and industrial technologies embodies one of the foundations of the advances and tailoring new materials. With the pulsed laser deposition being one of the key techniques for obtaining complex biocompatible materials with controllable stoichiometry, there is need for experimental and theoretical advancements towards understanding the dynamics of multi component plasmas. Here we investigate the laser ablation process on Cu-Mn-Al and Fe-Mn-Si by means of space-and time-resolved optical emission spectroscopy and fast camera imaging. In a fractal paradigm the space–time homographic transformations were correlated with the global dynamics of the ablation plasmas.


1997 ◽  
Vol 482 ◽  
Author(s):  
R. D. Vispute ◽  
V. Talyansky ◽  
S. Chupoon ◽  
R. Enck ◽  
T. Dahmas ◽  
...  

AbstractWe report high quality epitaxial growth of GaN film by pulsed laser deposition technique. In this method, a KrF pulsed excimer laser was used for ablation of a polycrystalline, stoichiometric GaN target. The ablated material was deposited on a substrate kept at a distance of ∼ 7 cm from the target surface and in an NH3 background pressure of 10−5 Torr and temperature of 750°C. The films (∼0.5 μm thick) grown on AIN buffered sapphire showed a x-ray diffraction rocking curve FWHM of 4–6 arc minutes. The ion channeling minimum yield in the surface region was ∼3% indicating a high degree of crystallinity. The optical band gap was found to be 3.4 eV. The epitaxial films were shiny, and the surface RMS roughness was ∼ 5–15 nm. The electrical resistivity of these films was in the range of 10−2–102 Ω-cm with a mobility in excess of 60 cm2V-1s−1 and carrier concentration of 1017–1019cm−3.


1995 ◽  
Vol 397 ◽  
Author(s):  
B. Dam ◽  
J.H. Rector ◽  
J. Johansson ◽  
DG. DE Groot ◽  
R. Griessen

ABSTRACTWe provide evidence that non-stoichiometric ablation of YBa2Cu3O7δ at low fluences is due to a phase separation of the target surface. On the other hand, in SrTiO3 we find at low fluences evidence for preferential ablation which is assisted by volume-diffusion. As a result, the Sr/Ti ratio of the ablated films can be tuned by choosing the appropriate fluence.


2000 ◽  
Vol 648 ◽  
Author(s):  
Yukihiko Yamagata ◽  
Tamiko Ohshima ◽  
Tomoaki Ikegami ◽  
Raj K. Thareja ◽  
Kenji Ebihara ◽  
...  

AbstractCharacteristics of laser-ablated carbon plasma and properties of diamond-like carbon film in KrF pulsed laser deposition were investigated using laser-induced fluorescence (LIF) and optical emission spectroscopy. Two-dimensional LIF images of C2 (Swan band, d3Φg – a3Φu) and C3 (Comet Head System, A1Φu –X1Σg+) molecules were detected as a function of laser energy density by narrow band pass filters and an intensified CCD camera. C2 LIF intensity is found to be weaker in the central part of the plume than that at the periphery at incident energy greater than 6 J/cm2. It is conjectured that C2 molecules are dissociated by collision with energetic species in the central part of the ablation plume, and degrade the diamond-like property of deposited films.


Sign in / Sign up

Export Citation Format

Share Document