Kinetic Analysis of Nonisothermal Crystallization

1995 ◽  
Vol 398 ◽  
Author(s):  
K. F. Kelton

ABSTRACTA realistic computer model for polymorphic crystallization under isothermal and nonisothermal conditions, which takes proper account of time-dependent nucleation behavior and cluster-size-dependent growth, is presented. A new correction to the standard Johnson-Mehl-Avrami-Kolmogorov (JMAK) statistical analysis that takes account of finite sample size is incorporated to simulate data taken from fine particles and nano-structured materials. Model predictions compare well with experimental data obtained from calorimetric studies of the polymorphic crystallization of lithium disilicate glass. The computer model is employed to evaluate commonly used methods of analysis for calorimetric data and to suggest new approaches for extracting kinetic parameters.

Ecology ◽  
1997 ◽  
Vol 78 (7) ◽  
pp. 2118-2132 ◽  
Author(s):  
Renate A. Wesselingh ◽  
Peter G. L. Klinkhamer ◽  
Tom J. de Jong ◽  
Laurence A. Boorman

1996 ◽  
Vol 51 (14) ◽  
pp. 3685-3695 ◽  
Author(s):  
David M. Ginter ◽  
Sudarshan K. Loyalka

2018 ◽  
Vol 14 (1) ◽  
Author(s):  
Bahador Abolpour ◽  
M. Mehdi Afsahi ◽  
Ataallah Soltani Goharrizi

Abstract In this study, reduction of in-flight fine particles of magnetite ore concentrate by methane at a constant heat flux has been investigated both experimentally and numerically. A 3D turbulent mathematical model was developed to simulate the dynamic motion of these particles in a methane content reactor and experiments were conducted to evaluate the model. The kinetics of the reaction were obtained using an optimizing method as: [-Ln(1-X)]1/2.91 = 1.02 × 10−2dP−2.07CCH40.16exp(−1.78 × 105/RT)t. The model predictions were compared with the experimental data and the data had an excellent agreement.


1996 ◽  
Vol 12 (4) ◽  
pp. 724-731 ◽  
Author(s):  
Jon Faust

Said and Dickey (1984,Biometrika71, 599–608) and Phillips and Perron (1988,Biometrika75, 335–346) have derived unit root tests that have asymptotic distributions free of nuisance parameters under very general maintained models. Under models as general as those assumed by these authors, the size of the unit root test procedures will converge to one, not the size under the asymptotic distribution. Solving this problem requires restricting attention to a model that is small, in a topological sense, relative to the original. Sufficient conditions for solving the asymptotic size problem yield some suggestions for improving finite-sample size performance of standard tests.


2012 ◽  
Vol 270 ◽  
pp. 223-231 ◽  
Author(s):  
Tomás A. Easdale ◽  
Robert B. Allen ◽  
Duane A. Peltzer ◽  
Jennifer M. Hurst

Metrika ◽  
2019 ◽  
Vol 83 (2) ◽  
pp. 243-254
Author(s):  
Mathias Lindholm ◽  
Felix Wahl

Abstract In the present note we consider general linear models where the covariates may be both random and non-random, and where the only restrictions on the error terms are that they are independent and have finite fourth moments. For this class of models we analyse the variance parameter estimator. In particular we obtain finite sample size bounds for the variance of the variance parameter estimator which are independent of covariate information regardless of whether the covariates are random or not. For the case with random covariates this immediately yields bounds on the unconditional variance of the variance estimator—a situation which in general is analytically intractable. The situation with random covariates is illustrated in an example where a certain vector autoregressive model which appears naturally within the area of insurance mathematics is analysed. Further, the obtained bounds are sharp in the sense that both the lower and upper bound will converge to the same asymptotic limit when scaled with the sample size. By using the derived bounds it is simple to show convergence in mean square of the variance parameter estimator for both random and non-random covariates. Moreover, the derivation of the bounds for the above general linear model is based on a lemma which applies in greater generality. This is illustrated by applying the used techniques to a class of mixed effects models.


1981 ◽  
Vol 18 (01) ◽  
pp. 65-75 ◽  
Author(s):  
Aidan Sudbury

In cell-size-dependent growth the probabilistic rate of division of a cell into daughter-cells and the rate of increase of its size depend on its size. In this paper the expected number of cells in the population at time t is calculated for a variety of models, and it is shown that population growths slower and faster than exponential are both possible. When the cell sizes are bounded conditions are given for exponential growth.


Sign in / Sign up

Export Citation Format

Share Document