Pulsed Laser Annealing of R.F.Sputtered Amorphous Si : H.Films, Doped with Arsenic

1981 ◽  
Vol 4 ◽  
Author(s):  
E. Fogarassy ◽  
R. Stuck ◽  
M. Toulemonde ◽  
P. Siffert ◽  
J.F. Morhange ◽  
...  

Arsenic doped amorphous silicon layers have been deposited on silicon single crystals by R.F.cathodic sputtering of a silicon target in a reactive argon-hydrogen mixture, and annealed with a Q-switched Ruby laser. Topographic analysis of the irradiated layers has shown the formation of a crater, due to an evaporation effect of material which could be related to the presence of a high concentration of Ar in the amorphous layer. RBS and Raman Spectroscopy showed that the remaining layer is not recrystallised probably due to inhibition by the residual hydrogen. However, it was found that arsenic diffuses into the monocrystalline substrate by laser induced diffusion of dopant from the surface solid source, leading to the formation of good quality P-N junctions.

1980 ◽  
Vol 1 ◽  
Author(s):  
W. R. Wampler ◽  
D. M. Follstaedt ◽  
P. S. Peercy

ABSTRACTPulsed ruby laser irradiation of unimplanted single crystal and implanted polycrystalline Al has been studied with ion beam analysis and TEM. The results show that Al is melted to a depth of ∼ 0.9 μm with a 4.2 J/cm2 , 15 nsec pulse, and that vacancies are quenched into Al during resolidification. Diffusion of Zn in liquid Al is observed, and a melt time of ∼ 65 nsec is estimated for a 3.8 J/cm2, 30 nsec pulse. The observations are in reasonable agreement with calculations of sample temperature and melt times. We observe no precipitation of AlSb in liquid Al for Sbimplanted Al, and conclude that the nucleation time satisfies 50 nsec ≲ tnuc ≲ 200 nsec. We find no evidence for amorphous Al after irradiation of single crystal Al with energies ≳ 1.5 J/cm2.


1983 ◽  
Vol 23 ◽  
Author(s):  
W. W. Anderson ◽  
H. F. Mac Millan ◽  
J. S. Katzeff ◽  
M. Lopez

ABSTRACTThe formation of single crystal multiple layers on silicon substrates with thicknesses in excess of 1 μm has been demonstrated to be a viable process. Film build-up is via repetitions of the steps (1) pre-deposition chemical cleaning of wafer, (2) magnetron sputter deposition of 0.3 pm thick amorphous Si, (3) interfacial mixing via 190 keV implantation of Si, and (4) film epitaxial crystallization via pulsed laser annealing. Doping has been demonstrated by both (1) P ion implantation and (2) P incorporation from PH3; included in the sputter gas ambient.


1986 ◽  
Vol 74 ◽  
Author(s):  
A. Polman ◽  
S. Roorda ◽  
S. B. Ogale ◽  
F. W. Saris

AbstractA novel method of pulsed laser processing of ion-implanted silicon is presented, in which samples are irradiated in water ambient. The water layer in contact with the silicon during irradiationh as a considerable influence on melting and solidificationd ynamics. Still, perfect epitaxy of a thin amorphous layer can be obtained using this method.For epitaxy to occur on a sample irradiated under water, 40 % more absorbed energy is necessary than for a sample irradiated in air. This indicates the occurrence of a considerable heat-flow from the silicon into the water layer during the laser pulse. From impurity redistribution after irradiation it is found that by processing a sample under water liquid-phase diffusion is reduced. Diffusion theory arguments indicate that this can be due to a reduction in total melt duration by about afactor 2–3. This can be due to faster cooling of the liquid silicon layer after the laser pulse whereas the melt-in time might be influenced as well. As a consequence, shallower impurity profiles can be obtained in crystalline silicon. No oxygen incorporation is detected and the surface morphology is not disturbed using this new process.


1982 ◽  
Vol 53 (4) ◽  
pp. 3261-3266 ◽  
Author(s):  
E. Fogarassy ◽  
R. Stuck ◽  
M. Toulemonde ◽  
J. C. Bruyere ◽  
P. Siffert

1983 ◽  
Vol 23 ◽  
Author(s):  
J. Sapriel ◽  
Y.I. Nissim

ABSTRACTThe lattice reconstruction produced by a pulsed laser irradiation in heavily damaged GaAs layers is studied. Spatially resolved Raman measurements are used to characterize the crystalline quality after the annealing cycle produced by a O-switched Ruby laser or by a picosecond pulsed Nd-YAG laser. The continuous evolution in the Raman spectra is usèd to follow the crystal recovery as a function of the irradiation parameters.


1978 ◽  
Vol 14 (4) ◽  
pp. 85 ◽  
Author(s):  
S.S. Kular ◽  
B.J. Sealy ◽  
K.G. Stephens ◽  
D.R. Chick ◽  
Q.V. Davis ◽  
...  

Author(s):  
Natalia Volodina ◽  
Anna Dmitriyeva ◽  
Anastasia Chouprik ◽  
Elena Gatskevich ◽  
Andrei Zenkevich

2021 ◽  
pp. 161437
Author(s):  
J. Antonowicz ◽  
P. Zalden ◽  
K. Sokolowski-Tinten ◽  
K. Georgarakis ◽  
R. Minikayev ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document